Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(21): 3061-3075, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37862039

RESUMO

Two novel redox conopeptides with proline residues outside and within the active site disulfide loop were derived from the venom duct transcriptome of the marine cone snails Conus frigidus and Conus amadis. Mature peptides with possible post-translational modification of 4-trans-hydroxylation of proline, namely, Fr874, Fr890[P1O], Fr890[P2O], Fr906, Am1038, and Am1054, have been chemically synthesized and characterized using mass spectrometry. The estimated reduction potential of cysteine disulfides of synthetic peptides varied from -298 to -328 mV, similar to the active site cysteine disulfide motifs of the redox family of proteins. Fr906/Am1054 exhibited pronounced catalytic activity and assisted in improving the yields of natively folded globular form α-conotoxin ImI. Three-dimensional (3D) structures of the redox conopeptides were optimized using computational methods and verified by 2D-ROESY NMR spectroscopy: C. frigidus peptides adopt an N-terminal helical fold and C. amadis peptides adopt distinct structures based on the Phe4-Pro/Hyp5 peptide bond configuration. The shift in the cis-trans configuration of the Phe4-Pro/Hyp5 peptide bond of Am1038/Am1054 was observed between reduced free thiol and oxidized disulfide forms of the optimized peptides. The report confirms the position-specific effect of hydroxyproline on the oxidative folding of conotoxins and sequence diversity of redox conopeptides in the venom duct of cone snails.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Transcriptoma , Peçonhas , Cisteína/metabolismo , Conotoxinas/química , Caramujo Conus/genética , Peptídeos/química , Prolina/metabolismo , Dissulfetos/metabolismo , Cistina/metabolismo , Oxirredução , Estresse Oxidativo
2.
Comput Biol Chem ; 97: 107635, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091368

RESUMO

Replacement of disulfide bridges with diselenide bridges is increasingly common to improve the stability, foldability, and structural refinement of the cysteine-rich polypeptides. Even though the global structural features are similar due to the replacement of disulfide with diselenide, the local conformational differences have been reported in a few polypeptides. The current report has used the constrained vicinal cysteine disulfide as the model to access the influence of the replacement of disulfides with diselenide on the local conformations. Using the density functional theory (DFT), structures of dipeptide vicinal loops are optimized by systematically replacing sulfur with selenium. Conformations of the disulfide/selenosulfide/diselenide were identified using the side-chain torsional angle χ1, χ2, χ3, χ2', χ1' and mapped to one of the possible 32 conformations of the cysteine disulfide. Further, the influence of the change of configuration of Cα-atom of cysteine/selenocysteine from 'R' to 'S' configuration and peptide bond from cis to trans has also been accessed on the conformations of dipeptide vicinal loops. The results indicate that diselenide/selenosulfide explores additional conformational space apart from accommodating the conformations observed in the vicinal disulfide which is more amplified in the heterochiral system. Differences have been observed at the internal coordinates of the optimized structures of dipeptide vicinal disulfide, selenosulfide, and diselenide. The change in free energy (ΔG), spin density (Δs(r)), and electron density (Δρ(r)) was also calculated due to the replacement of disulfide with selenosulfide/diselenide. Conformational analysis of disulfides and that of the replaced diselenides in the crystal structures of the proteins retrieved from PDB have also indicated the retention as well as differences in the local conformations. The tendency of the diselenide loop to explore the additional conformational space may prompt for the local conformational differences in the corresponding disulfide to diselenide replaced polypeptides.


Assuntos
Cisteína , Dissulfetos , Cisteína/química , Dipeptídeos , Dissulfetos/química , Modelos Moleculares , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA