Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742436

RESUMO

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Assuntos
Lactobacillus delbrueckii , Peptídeos , Lactobacillus delbrueckii/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Queijo/microbiologia , Queijo/análise , Soro do Leite/química , Alimento Funcional , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas do Soro do Leite/química
2.
J Sci Food Agric ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299734

RESUMO

Foods prepared using microbial conversion of major and minor food components, which are otherwise known as fermented foods continue to impact human health. The live microorganisms and transformed metabolites can also have a deep influence on the gut microbiota, the multifaceted population of microorganisms dwelling inside the gut play a key role in wellbeing of an individual. The probiotic strains delivered through the consumption of fermented food and other bioactive components such as polyphenolic metabolites, bioactive peptides, short-chain fatty acids and others including those produced via gut microbiota mediated transformations have been proposed to balance the gut microbiota diversity and activity, and also to regulate the inflammation in the gut. However, little is known about such effects and only a handful of fermented foods have been explored to date. We herein review the recent knowledge on the dysbiotic gut microbiota linking to major gut inflammatory diseases. Also, evidences that fermented food consumption modulates the gut microbiota, and its impact on the gut inflammation and inflammatory diseases have been discussed. © 2024 Society of Chemical Industry.

3.
Mol Biol Rep ; 50(4): 3365-3378, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36729207

RESUMO

BACKGROUND: The state of Manipur, North East India has distinct topology of hill and valley regions with vast agroclimatic variability, being considered as one of the centers of rice diversity. The indigenous Manipur black rice cultivars exhibit wide range of diversity in morphology, pericarp color, shape and size of grain, aroma, glutinous or non-glutinous features but remain less characterised. Many of these cultivars, such as those named Chakhao, are endowed with multiple health benefits due to high anthocyanins, and hold special importance for the local people. It is important to analyse the genetic diversity and population structure for this germplasm with unique allelic combinations to utilize in rice breeding programme. METHODS AND RESULTS: We characterized total soluble seed protein fractions to not only fingerprint the 45 indigenous black rice cultivars but assess their genetic relatedness. Cluster analyses generated mainly two groups, complemented by PCoA scatter plot ascertaining geographical distinction. The hill black rice were more diverse. The population structure analysis revealed seven subpopulations indicating high genetic variability. The 24 polymorphic bands were scored in the range of 127.8 to 10.3 kDa comprised of four protein fractions. Three polypeptide bands each were ascribed to known fractions of glutelins and prolamins, while one band each could be described for albumin and globulin fractions, besides other diagnostic bands. CONCLUSION: Some diverse cultivars were Amubi, Chedo Anal, Chipi Buh, Athebu, Poireton, BuPu Mui, Kotha Chahao II. These cultivars can be used in future black rice breeding programmes. This can further prevent genetic erosion and protect intellectual property rights.


Assuntos
Oryza , Humanos , Oryza/genética , Oryza/metabolismo , Antocianinas/metabolismo , Filogenia , Melhoramento Vegetal , Índia , Sementes/genética , Variação Genética/genética
4.
Front Nutr ; 9: 861347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529464

RESUMO

Green leafy vegetables or GLVs are one of the main attractions in the local vegetable market and are widely consumed as the main course and side dish in the Sikkim Himalayan region (SHR). This study evaluated the total phenolic (TPC) and flavonoid contents (TFC) and antioxidant potential in different extracts such as methanolic (MeOH), ethyl acetate (EtOAC), and hexane extracts of selected GLVs followed by changes in the antioxidant activity on cooking and stimulated gastrointestinal (GI) digestion. The MeOH extracts of Urtica dioica L. (Sisnu), Nasturtium officinale W. T. Aiton (Simrayo), Diplazium esculentum Retz. Sw. (Ningro), and Chenopodium album L. (Bethu) were estimated to have higher TPC [22.73-45.84 µg gallic acid equivalent (GAE)/mg of extract]. In contrast, the plant extracts prepared using EtOAC (except for N. officinale, where TFC was found to be higher in hexane extract) were found to contain higher TFC (3.42-14.86 µg quercetin equivalent (QE)/mg of extract). The MeOH extracts also exhibited higher 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.55-18.67 µg ascorbic acid equivalent (AAE)/mg of extract), total antioxidant activity (TAA) (0.27-0.32 mg AAE/mg of extract), and reducing power potential (RPP) (1.6-9.9 µg AAE/mg of extract). Among the test MeOH extracts, U. dioica demonstrated relatively higher antioxidant activities and was selected for cooking experiments followed by simulated GI digestion. The findings revealed that the loss of antioxidant activity was minimal in steam-cooked leaves (3.5% in 40 min) as compared to the boiled ones (18% in 10 min). The simulated GI (simulated salivary, gastric, and intestinal) digestion performed on raw, steam cooked, and boiled U. dioica leaves showed substantial enhancement of antioxidant properties (by 64.63%) through steam cooking in comparison to the raw leaves. Overall the study concludes that higher antioxidant properties can be achieved on the consumption of steam-cooked U. dioica leaves.

5.
Food Chem ; 387: 132889, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430540

RESUMO

A novel soy chhurpi product was developed by fermentation of soymilk using proteolytic Lactobacillus delbrueckii strains isolated from traditional chhurpi production of Sikkim Himalaya. Soymilk fermentation by L. delbrueckii WS4 was associated with the hydrolysis of globulin proteins, with observed antioxidant, and ACE-inhibitory activity which further increased upon simulated in vitro gastrointestinal digestion. Peptidomics analysis of soy chhurpi and its gastrointestinal digest resulted in the identification of bioactive peptides with ACE-inhibitory and antioxidant properties. In silico antihypertensive property prediction followed by molecular docking study demonstrated strong binding affinity of selected peptides with ACE. The glycinin-derived peptide, SVIKPPTDE escaped gastrointestinal digestion and demonstrated strong non-bond interactions with ACE catalytic residues. QSAR models predicted an ACE-inhibitory IC50 of 21.29 µM for SVIKPPTDE. This is the first report on the production of novel functional soy chhurpi cheese using defined starter strains and the identification of bioactive peptides in undigested and gastrointestinal digested soy chhurpi.


Assuntos
Lactobacillus delbrueckii , Antioxidantes , Lactobacillus delbrueckii/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/química , Glycine max/metabolismo
6.
J Food Sci Technol ; 59(4): 1353-1361, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250060

RESUMO

Black soybean was fermented with four different potential Bacillus spp., including Bacillus licheniformis K1G, Bacillus subtilis K2B, Bacillus amyloliquefaciens K2G and Bacillus subtilis K2M, isolated from kinema, a traditionally fermented soybean product of Sikkim. Enhancement of antioxidant activity was observed with DPPH radical scavenging activity, reducing power potential and total antioxidant activity in methanolic as well as water extracts. Overall antioxidant activities were found to be higher in fermented black soybean in comparison to yellow soybean, showing its potential for production of kinema. Further, black soybean fermented using different starter was subjected to gastrointestinal digestion using pepsin and pancreatin. Upon gastrointestinal digestion of fermented black soybean changes in antioxidant activity was observed that was found to be reliant on the species and strains applied for fermentation as starter culture. Among different starters used for fermentation, black soybean fermented using B. subtilis K2M had higher DPPH radical scavenging and reducing power activity on gastrointestinal digestion. This study concludes that B. subtilis K2M can be applied for fermentation of black soybean for production of kinema as well as bioactive protein hydrolysates. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05144-y.

7.
Food Res Int ; 141: 110161, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33642021

RESUMO

Kinema is an alkaline traditionally fermented soybean product popularly consumed in Sikkim Himalayan region. Kinema was prepared by soybean fermented with different species of Bacillus and analyzed for peptide content, antioxidant activity and consequence of gastrointestinal enzymes (pepsin and pancreatin) on the antioxidant effect. Antioxidant effect was enhanced during soybean fermentation using different starters, which further increased during gastrointestinal digestion. The peptides formed during soybean fermentation were analyzed using LC-MS/MS. Soybean fermented using different starters resulted in the production of some common peptides and a large number of unique peptides, which may affect the functional property of kinema. Peptides having antioxidative amino acids (histidine, phenylalanine, methionine, tryptophan and tyrosine) and significant GRAVY value were selected for their molecular interaction with myeloperoxidase (MPO), a key enzyme responsible for elevated oxidative stress. A peptide SEDDVFVIPAAYPF produced in kinema fermented using Bacillus licheniformis 1G had interaction with four out of five catalytic residues identified in MPO. Kinema prepared using specific starter can produce unique peptides responsible for specific health benefits.


Assuntos
Bacillus , Antioxidantes , Cromatografia Líquida , Simulação de Acoplamento Molecular , Peptídeos , Espectrometria de Massas em Tandem
8.
Compr Rev Food Sci Food Saf ; 20(1): 960-979, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325160

RESUMO

Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.


Assuntos
Queijo , Lactobacillales , Probióticos , Ácidos Graxos , Alimento Funcional
9.
Sci Rep ; 8(1): 4090, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511228

RESUMO

Zerumbone is a known anti-cancer herbal compound. However, the actual protein target is not fully understood or known. This investigation focus on the association of zerumbone in HCT116 colon cancer cell proliferation and its link with TNF-alpha. The study shows that with the increasing concentration of zerumbone, there was a reduction of HCT116 cells proliferation based on the cell line study and hence higher TNF-alpha inhibition based on the TNF-alpha assay. The study also emphasizes on the computational aspect by investigating the molecular docking analysis of zerumbone against TNF-alpha. The docked complex was further validated using molecular dynamics simulation studies. The docking analysis observed that alpha-beta unsaturated carbonyl scaffold is an important moiety for the anti-cancer activity of zerumbone. Furthermore, the DFT analysis also confirms the reactivity nature of zerumbone based on the frontier molecular orbital analysis.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células HCT116/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Sesquiterpenos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Antineoplásicos/química , Colo , Células HCT116/fisiologia , Humanos , Fatores Imunológicos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sesquiterpenos/química , Fator de Necrose Tumoral alfa/química
10.
Sci Rep ; 7(1): 12483, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970561

RESUMO

Evolution of resistance among insects to action of pesticides has led to the discovery of several insecticides (neonicotinoids and organophosphates) with new targets in insect nervous system. Present study evaluates the mode of inhibition of acetylchlonesterase (AChE), biochemical efficacy, and molecular docking of 2,3-dimethylmaleic anhydride, against Periplaneta americana and Sitophilus oryzae. The knockdown activity of 2,3-dimethylmaleic anhydride was associated with in vivo inhibition of AChE. At KD99 dosage, the 2,3-dimethylmaleic anhydride showed more than 90% inhibition of AChE activity in test insects. A significant impairment in antioxidant system was observed, characterized by alteration in superoxide dismutase and catalase activities along with increase in reduced glutathione levels. Computational docking programs provided insights in to the possible interaction between 2,3-dimethylmaleic anhydride and AChE of P. americana. Our study reveals that 2,3-dimethylmaeic anhydride elicits toxicity in S. oryzae and P. americana primarily by AChE inhibition along with oxidative stress.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/farmacologia , Anidridos Maleicos/farmacologia , Periplaneta/efeitos dos fármacos , Gorgulhos/efeitos dos fármacos , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Catalase/antagonistas & inibidores , Catalase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Expressão Gênica , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/química , Cinética , Anidridos Maleicos/química , Simulação de Acoplamento Molecular , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/enzimologia , Oryza/parasitologia , Estresse Oxidativo/efeitos dos fármacos , Periplaneta/enzimologia , Periplaneta/genética , Periplaneta/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Termodinâmica , Gorgulhos/enzimologia , Gorgulhos/genética , Gorgulhos/crescimento & desenvolvimento
11.
Bioresour Technol ; 235: 358-365, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28384588

RESUMO

The aim of this study was the production of soybean bioactive hydrolysate using Bacillus spp. isolated from kinema. Totally 251 bacteria isolated from kinema samples, collected at different time period were screened for protease, ß-glucosidase and α-amylase activities and further identified by ARDRA based grouping followed by analysis of 16S rRNA gene sequence similarity. The results showed that Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus licheniformis were the major Bacillus species. Twelve fermentative strains belonging to these groups and having high protease, α-amylase and ß-glucosidase activity were used for solid state fermentation. The best strains for soybean fermentation that result in production of protein hydrolysates rich in polyphenols that have higher bioactivity were B. subtilis KN12C, B. amyloliquefaciens KN2G and B. licheniformis KN13C. Potential isolates can be applied for the production of soybean hydrolysates and can also find application in production of value added products from by-products of soybean processing industries.


Assuntos
Bacillus/metabolismo , alfa-Amilases/metabolismo , Fermentação , RNA Ribossômico 16S/genética , beta-Glucosidase/metabolismo
12.
Protoplasma ; 253(2): 393-402, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25902895

RESUMO

Red light perceived by the shoot bottom suppresses photomorphogenesis in rice seedlings mediated by phytochrome A. Shoots of these seedlings grown in red light having their shoot bottom exposed were deficient in chlorophyll and accumulated high concentration of trans-zeatin riboside. However, reduced presence of isopentynyl adenosine, dihydrozeatin riboside was observed in shoots of red-light-grown non-green seedlings in comparison to green seedling. The message abundance of cytokinin receptor (OsHK5), transporters (OsENT1, OsENT2), and response regulators (OsRR4, OsRR10) was downregulated in these red-light-grown non-green seedlings. Attenuation of greening process was reversed by application of exogenous cytokinin analogue, benzyladenine, or supplementing red light with blue light. In the same vein, the suppression of gene expression of cytokinin receptor, transporters, and type-A response regulators was reversed in red-light-grown seedlings treated with benzyladenine suggesting that the disarrayed cytokinin (CK) signaling cascade is responsible for non-greening of seedlings grown in red light. The reversal of red-light-induced suppression of photomorphogenesis by blue light and benzyladenine demonstrates the interaction of light and cytokinin signaling cascades in the regulation of photomorphogenesis. Partial reversal of greening process by exogenous application of benzyladenine suggests, apart from CKs perception, transportation and responsiveness, other factors are also involved in modulation of suppression of photomorphogenesis by red light.


Assuntos
Citocininas/fisiologia , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos da radiação , Reguladores de Crescimento de Plantas/fisiologia , Plântula/crescimento & desenvolvimento , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Luz , Oryza/efeitos dos fármacos , Oryza/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA