Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 789688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153750

RESUMO

Millions of people are still infected with hepatitis C virus (HCV) nowadays. Although recent antivirals targeting HCV proteins are very efficient, they are not affordable for many people infected with this virus. Therefore, new and more accessible treatments are needed. Several Ivorian medicinal plants are traditionally used to treat "yellow malaria", a nosological category including illness characterized by symptomatic jaundice such as hepatitis. Therefore, some of these plants might be active against HCV. An ethnobotanical survey in Côte d'Ivoire allowed us to select such medicinal plants. Those were first extracted with methanol and tested for their anti-HCV activity. The most active ones were further studied to specify their IC50 and to evaluate their toxicity in vitro. Greener solvents were tested to obtain extracts with similar activities. Following a phytochemical screening, tannins of the most active plants were removed before re-testing on HCV. Some of these tannins were identified by UPLC-MS and pure molecules were tested against HCV. Out of the fifteen Ivorian medicinal plants selected for their putative antiviral activities, Carapa procera DC. and Pericopsis laxiflora (Benth. ex Baker) Meeuwen were the most active against HCV (IC50: 0.71 and 0.23 µg/ml respectively) and not toxic for hepatic cells. Their crude extracts were rich in polyphenols, including tannins such as procyanidins A2 which is active against HCV. The same extracts without tannin lost their anti-HCV activity. Replacing methanol by hydro-ethanolic solvent led to tannins-rich extracts with similar antiviral activities, and higher than that of aqueous extracts.

2.
PLoS One ; 13(11): e0198226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485282

RESUMO

The treatment of hepatitis C virus (HCV) infection by combination of direct acting antivirals (DAA), with different mode of action, has made substantial progress in the past few years. However, appearance of resistance and high cost of the therapy is still an obstacle in the achievement of the therapy, more specifically in developing countries. In this context, search for affordable antivirals with new mechanisms of action is still needed. Tea, after water, is the most popular drink worldwide. Polyphenols extracted from green tea have already shown anti-HCV activity as entry inhibitors. Here, three different theaflavins, theaflavin (TF1), theaflavin-3'-monogallate (TF2), and theaflavin-3-3'-digallate (TF3), which are major polyphenols from black tea, were tested against HCV in cell culture. The results showed that all theaflavins inhibit HCV infection in a dose-dependent manner in an early step of infection. Results obtained with HCV pseudotyped virions confirmed their activity on HCV entry and demonstrated their pan-genotypic action. No effect on HCV replication was observed by using HCV replicon. Investigation on the mechanism of action of black tea theaflavins showed that they act directly on the virus particle and are able to inhibit cell-to-cell spread. Combination study with inhibitors most widely used in anti-HCV treatment regimen demonstrated that TF3 exerts additive effect. In conclusion, theaflavins, that are present in high quantity in black tea, are new inhibitors of HCV entry and hold promise for developing in therapeutic arsenal for HCV infection.


Assuntos
Antioxidantes/farmacologia , Antivirais/farmacologia , Biflavonoides/farmacologia , Catequina/farmacologia , Hepacivirus/efeitos dos fármacos , Fígado/virologia , Polifenóis/farmacologia , Chá , Camellia sinensis , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Fígado/efeitos dos fármacos
3.
J Pharm Pharmacol ; 69(8): 1041-1055, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28444868

RESUMO

OBJECTIVES: Eight extremophile plants from Tunisia were screened to find natural products with benefits in human health. METHODS: These plants were collected in different areas in Tunisia. Their methanolic extracts were evaluated for their total phenolic content and for their antiradical (DPPH), antimicrobial (on 35 bacteria and one yeast), antiviral (hepatitis C virus, HCV) and cytotoxic activity (against WI38 and J774 cell lines). The most active species were subjected to a bioguided fractionation. KEY FINDINGS: The screening revealed promising activity for four plants, but two species have both antiradical and antimicrobial activity: Juncus maritimus and Limonium virgatum. The rhizomes extract of J. maritimus showed the highest activity against HCV, a selective antibacterial activity against Streptococcus dysgalactiae, and a moderate antiradical activity which is due to luteolin isolated in one step by centrifugal partition chromatography. The stems' and leaves' extracts of L. virgatum were rich in polyphenols responsible for the antiradical activity. Also, Limonium extracts showed an antibacterial activity with a broad spectrum. CONCLUSIONS: Extremophile plants have proven to be a promising source for bioactive metabolites. They have a powerful antioxidant system highly influenced by biotic and abiotic factors and the ability to produce secondary metabolites with antimicrobial activity.


Assuntos
Descoberta de Drogas/tendências , Ecossistema , Extremófilos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Descoberta de Drogas/métodos , Extremófilos/isolamento & purificação , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Tunísia/epidemiologia
4.
Arch Virol ; 161(5): 1169-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26843184

RESUMO

In this study, we examined the antiviral properties of Khaya grandifoliola C.DC (Meliaceae) on the hepatitis C virus (HCV) life cycle in vitro and identified some of the chemical constituents contained in the fraction with the most antiviral activity. Dried bark powder was extracted by maceration in a methylene chloride/methanol (MCM) system (50:50; v/v) and separated on silica gel by flash chromatography. Infection and replication rates in Huh-7 cells were investigated by luciferase reporter assay and indirect immunofluorescence assay using subgenomic replicons, HCV pseudotyped particles, and cell-culture-derived HCV (HCVcc), respectively. Cell viability was assessed by MTT assay, and cellular gene expression was analysed by qRT-PCR. The chemical composition of the fraction with the most antiviral activity was analysed by coupled gas chromatography and mass spectrometry (GC-MS). Five fractions of different polarities (F0-F100) were obtained from the MCM extract. One fraction (KgF25) showed the strongest antiviral effect on LucUbiNeoET replicons at nontoxic concentrations. Tested at 100 µg/mL, KgF25 had a high inhibitory effect on HCV replication, comparable to that of 0.01 µM daclatasvir or 1 µM telaprevir. This fraction also inhibited HCVcc infection by mostly targeting the entry step. KgF25 inhibited HCV entry in a pan-genotypic manner by directly inactivating free viral particles. Its antiviral effects were mediated by the transcriptional upregulation of the haem oxygenase-1 gene and interferon antiviral response. Three constituents, namely, benzene, 1,1'-(oxydiethylidene)bis (1), carbamic acid, (4-methylphenyl)-, 1-phenyl (2), and 6-phenyl, 4-(1'-oxyethylphenyl) hexene (3), were identified from the active fraction KgF25 by GC-MS. Khaya grandifoliola contains ingredients capable of acting on different steps of the HCV life cycle.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Meliaceae , Casca de Planta , Extratos Vegetais/farmacologia , Antivirais/isolamento & purificação , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cromatografia em Gel/métodos , Relação Dose-Resposta a Droga , Imunofluorescência , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Neoplasias Hepáticas/metabolismo , Meliaceae/química , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
J Virol ; 89(19): 10053-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202241

RESUMO

UNLABELLED: Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE: In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Polifenóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antocianinas/administração & dosagem , Antocianinas/farmacologia , Antivirais/administração & dosagem , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Microscopia Crioeletrônica , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Hepacivirus/ultraestrutura , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Interferon-alfa/administração & dosagem , Polifenóis/administração & dosagem , Prolina/administração & dosagem , Prolina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA