Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(27): 19400-19427, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887636

RESUMO

Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 µg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 µg mL-1 and 3.86 µg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.

2.
Front Pharmacol ; 15: 1378249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881874

RESUMO

Sodium nitrite (NaNO2) is a widely used food ingredient, although excessive concentrations can pose potential health risks. In the present study, we evaluated the deterioration effects of NaNO2 additives on hematology, metabolic profile, liver function, and kidney function of male Wistar rats. We further explored the therapeutic potential of supplementation with S. costus root ethanolic extract (SCREE) to improve NaNO2-induced hepatorenal toxicity. In this regard, 65 adult male rats were divided into eight groups; Group 1: control, Groups 2, 3, and 4 received SCREE in 200, 400, and 600 mg/kg body weight, respectively, Group 5: NaNO2 (6.5 mg/kg body weight), Groups 6, 7 and 8 received NaNO2 (6.5 mg/kg body weight) in combination with SCREE (200, 400, and 600 mg/kg body weight), respectively. Our results revealed that the NaNO2-treated group shows a significant change in deterioration in body and organ weights, hematological parameters, lipid profile, and hepatorenal dysfunction, as well as immunohistochemical and histopathological alterations. Furthermore, the NaNO2-treated group demonstrated a considerable increase in the expression of TNF-α cytokine and tumor suppressor gene P53 in the kidney and liver, while a significant reduction was detected in the anti-inflammatory cytokine IL-4 and the apoptosis suppressor gene BCL-2, compared to the control group. Interestingly, SCREE administration demonstrated the ability to significantly alleviate the toxic effects of NaNO2 and improve liver function in a dose-dependent manner, including hematological parameters, lipid profile, and modulation of histopathological architecture. Additionally, SCREE exhibited the ability to modulate the expression levels of inflammatory cytokines and apoptotic genes in the liver and kidney. The phytochemical analysis revealed a wide set of primary metabolites in SCREE, including phenolics, flavonoids, vitamins, alkaloids, saponins and tannins, while the untargeted UPLC/T-TOF-MS/MS analysis identified 183 metabolites in both positive and negative ionization modes. Together, our findings establish the potential of SCREE in mitigating the toxic effects of NaNO2 by modulating metabolic, inflammatory, and apoptosis. Together, this study underscores the promise of SCREE as a potential natural food detoxifying additive to counteract the harmful impacts of sodium nitrite.

3.
Front Pharmacol ; 15: 1406939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919260

RESUMO

Rheumatoid arthritis (RA) is a debilitating autoimmune condition characterized by chronic synovitis, joint damage, and inflammation, leading to impaired joint functionality. Existing RA treatments, although effective to some extent, are not without side effects, prompting a search for more potent therapies. Recent research has revealed the critical role of FAS-associated death domain protein (FADD) microvesicular shedding in RA pathogenesis, expanding its scope beyond apoptosis to include inflammatory and immune pathways. This study aimed to investigate the intricate relationship between mi-RNA 128a, autoimmune and inflammatory pathways, and adenosine levels in modulating FADD expression and microvesicular shedding in a Freund's complete adjuvant (FCA) induced RA rat model and further explore the antirheumatoid potency of trimetazidine (TMZ). The FCA treated model exhibited significantly elevated levels of serum fibrogenic, inflammatory, immunological and rheumatological diagnostic markers, confirming successful RA induction. Our results revealed that the FCA-induced RA model showed a significant reduction in the expression of FADD in paw tissue and increased microvesicular FADD shedding in synovial fluid, which was attributed to the significant increase in the expression of the epigenetic miRNA 128a gene in addition to the downregulation of adenosine levels. These findings were further supported by the significant activation of the TLR4/MYD88 pathway and its downstream inflammatory IkB/NFB markers. Interestingly, TMZ administration significantly improved, with a potency similar to methotrexate (MTX), the deterioration effect of FCA treatment, as evidenced by a significant attenuation of fibrogenic, inflammatory, immunological, and rheumatological markers. Our investigations indicated that TMZ uniquely acted by targeting epigenetic miRNA128a expression and elevating adenosine levels in paw tissue, leading to increased expression of FADD of paw tissue and mitigated FADD microvesicular shedding in synovial fluid. Furthermore, the group treated with TMZ showed significant downregulation of TLR4/MYD88 and their downstream TRAF6, IRAK and NF-kB. Together, our study unveils the significant potential of TMZ as an antirheumatoid candidate, offering anti-inflammatory effects through various mechanisms, including modulation of the FADD-epigenetic regulator mi-RNA 128a, adenosine levels, and the TLR4 signaling pathway in joint tissue, but also attenuation of FADD microvesicular shedding in synovial fluid. These findings further highlight the synergistic administration of TMZ and MTX as a potential approach to reduce adverse effects of MTX while improving therapeutic efficacy.

4.
Future Med Chem ; 16(11): 1053-1073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708686

RESUMO

Aim: This study focused on designing and synthesizing novel derivatives of 3,5,8-trisubstituted coumarin. Results: The synthesized compounds, particularly compound 5, exhibited significant cytotoxic effects on MCF-7 cells, surpassing staurosporine, and reduced toxicity toward MCF-10A cells, highlighting potential pharmacological advantages. Further, compound 5 altered the cell cycle and significantly increased apoptosis in MCF-7 cells, involving both early (41.7-fold) and late stages (33-fold), while moderately affecting necrotic signaling. The antitumor activity was linked to a notable reduction (4.78-fold) in topoisomerase IIß expression. Molecular modeling indicated compound 5's strong affinity for EGFR, human EGF2 and topoisomerase II proteins. Conclusion: These findings highlight compound 5 as a multifaceted antitumor agent for breast cancer.


[Box: see text].


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Cumarínicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Estrutura-Atividade , Células MCF-7 , Estrutura Molecular , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores
5.
BMC Chem ; 17(1): 174, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041156

RESUMO

In the present study, we explored the potential of coumarin-based compounds, known for their potent anticancer properties, by designing and synthesizing a novel category of 8-methoxycoumarin-3-carboxamides. Our aim was to investigate their antiproliferative activity against liver cancer cells. Toward this, we developed a versatile synthetic approach to produce a series of 8-methoxycoumarin-3-carboxamide analogues with meticulous structural features. Assessment of their antiproliferative activity demonstrated their significant inhibitory effects on the growth of HepG2 cells, a widely studied liver cancer cell line. Among screened compounds, compound 5 exhibited the most potent antiproliferative activity among the screened compounds (IC50 = 0.9 µM), outperforming the anticancer drug staurosporine (IC50 = 8.4 µM), while showing minimal impact on normal cells. The flow cytometric analysis revealed that compound 5 induces cell cycle arrest during the G1/S phase and triggers apoptosis in HepG2 cells by increasing the percentage of cells arrested in the G2/M and pre-G1 phases. Annexin V-FITC/PI screening further supported the induction of apoptosis without significant necrosis. Further, compound 5 exhibited the ability to activate caspase3/7 protein and substantially inhibited ß-tubulin polymerization activity in HepG2 cells. Finally, molecular modelling analysis further affirmed the high binding affinity of compound 5 toward the active cavity of ß-tubulin protein, suggesting its mechanistic involvement. Collectively, our findings highlight the therapeutic potential of the presented class of coumarin analogues, especially compound 5, as promising candidates for the development of effective anti-hepatocellular carcinoma agents.

6.
RSC Adv ; 13(47): 33080-33095, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37954422

RESUMO

Breast cancer is a global health concern, with increasing disease burden and disparities in access to healthcare. Late diagnosis and limited treatment options in underserved areas contribute to poor outcomes. In response to this challenge, we developed a novel family of 2-substituted-quinoxaline analogues, combining coumarin and quinoxaline scaffolds known for their anticancer properties. Through a versatile synthetic approach, we designed, synthesized, and characterized a set of 2-substituted quinoxaline derivatives. The antiproliferative activity of the synthesized compounds was assessed toward the MCF-7 breast cancer cells. Our investigations showed that the synthesized compounds exhibit considerable antiproliferative activity toward MCF-7 cells. Notably, compound 3b, among examined compounds, displayed a superior inhibitory effect (IC50 = 1.85 ± 0.11 µM) toward the growth of MCF-7 cells compared to the conventional anticancer drug staurosporine (IC50 = 6.77 ± 0.41 µM) and showed minimal impact on normal cells (MCF-10A cell lines, IC50 = 33.7 ± 2.04 µM). Mechanistic studies revealed that compound 3b induced cell cycle arrest at the G1 transition and triggered apoptosis in MCF-7 cells, as evidenced by increasing the percentage of cells arrested in the G2/M and pre-G1 phases utilizing flow cytometric analysis and Annexin V-FITC/PI analysis. Moreover, compound 3b was found to substantially suppress topoisomerase enzyme activity in MCF-7 cells. Molecular modeling studies further supported the potential of compound 3b as a therapeutic candidate by demonstrating significant binding affinity to the active sites of both topoisomerase II and EGFR proteins. Taken together, the presented 2-substituted-quinoxaline analogues, especially compound 3b, show promise as potential candidates for the development of effective anti-breast cancer drugs.

7.
Front Chem ; 11: 1231030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601910

RESUMO

Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.

8.
Bioorg Chem ; 139: 106747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531819

RESUMO

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Assuntos
Ceramidas , Ceramidase Neutra , Domínio Catalítico , Ceramidas/química , Ceramidase Neutra/antagonistas & inibidores , Esfingosina/química
9.
Drug Deliv ; 30(1): 2241665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537858

RESUMO

Canagliflozin (CFZ) is a sodium-glucose cotransporter-2 inhibitor (SGLT2) that lowers albuminuria in type-2 diabetic patients, cardiovascular, kidney, and liver disease. CFZ is classified as class IV in the Biopharmaceutical Classification System (BCS) and is characterized by low permeability, solubility, and bioavailability, most likely attributed to hepatic first-pass metabolism. Nanocrystal-based sublingual formulations were developed in the presence of sodium caprate, as a wetting agent, and as a permeability enhancer. This formulation is suitable for children and adults and could enhance solubility, permeability, and avoid enterohepatic circulation due to absorption through the sublingual mucosa. In the present study, formulations containing various surfactants (P237, P338, PVA, and PVP K30) were prepared by the Sono-homo-assisted precipitation ion technique. The optimized formula prepared with PVP-K30 showed the smallest particle size (157 ± 0.32 nm), Zeta-potential (-18 ± 0.01), and morphology by TEM analysis. The optimized formula was subsequently formulated into a sublingual tablet containing Pharma burst-V® with a shorter disintegration time (51s) for the in-vivo study. The selected sublingual tablet improved histological and biochemical markers (blood glucose, liver, and kidney function), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) pathway compared to the market formula, increased CFZ's antidiabetic potency in diabetic rabbits, boosted bioavailability by five-fold, and produced faster onset of action. These findings suggest successful treatment of diabetes with CFZ nanocrystal-sublingual tablets.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Coelhos , Canagliflozina , Comprimidos/química , Solubilidade , Povidona/química , Permeabilidade , Nanopartículas/química
11.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234810

RESUMO

Inflammation is the main cause of several autoimmune diseases, including type I diabetes, rheumatoid arthritis, bullous pemphigoid, paraneoplastic pemphigoid, and multiple sclerosis. Currently, there is an urgent demand for the discovery of novel anti-inflammatory drugs with potent activity but also safe for long-term application. Toward this aim, the present study reported the design, synthesis, and characterization of a set of novel 1,3-disubstituted-2-thiohydantoins derivatives. The anti-inflammatory activity of synthesized compounds was assessed against murine leukemia cell line (RAW264.7) by evaluating the cytotoxicity activity and their potency to prevent nitric oxide (NO) production. The results revealed that the synthesized compounds possess a considerable cytotoxic activity together with the ability to reduce the NO production in murine leukemia cell line (RAW264.7). Among synthesized compounds, compound 7 exhibited the most potent cytotoxic activity with IC50 of 197.68 µg/mL, compared to celecoxib drug (IC50 value 251.2 µg/mL), and demonstrated a significant ability to diminish the NO production (six-fold reduction). Exploring the mode of action responsible for the anti-inflammatory activity revealed that compound 7 displays a significant and dose-dependent inhibitory effect on the expression of pro-inflammatory cytokines IL-1ß. Furthermore, compound 7 demonstrated the ability to significantly reduce the expression of the inflammatory cytokines IL-6 and TNF-α at 50 µg/mL, as compared to Celecoxib. Finally, detailed molecular modelling studies indicated that compound 7 exhibits a substantial binding affinity toward the binding pocket of the cyclooxygenase 2 enzyme. Taken together, our study reveals that 1,3-disubstituted-2-thiohydantoin could be considered as a promising scaffold for the development of potent anti-inflammatory agents.


Assuntos
Leucemia , Tioidantoínas , Animais , Anti-Inflamatórios/química , Celecoxib , Ciclo-Oxigenase 2/metabolismo , Humanos , Interleucina-6 , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico/metabolismo , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
12.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956848

RESUMO

Breast cancer is the most common cancer in women, responsible for over half a million deaths in 2020. Almost 75% of FDA-approved drugs are mainly nitrogen- and sulfur-containing heterocyclic compounds, implying the importance of such compounds in drug discovery. Among heterocycles, thiazole-based heterocyclic compounds have demonstrated a broad range of pharmacological activities. In the present study, a novel set of 1,3-thiazole derivatives was designed and synthesized based on the coupling of acetophenone derivatives, and phenacyl bromide was substituted as a key reaction step. The activity of synthesized compounds was screened against the proliferation of two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all compounds exhibited a considerable antiproliferative activity toward the breast cancer cells as compared to staurosporine, with no significant cytotoxicity toward the epithelial cells. Among the synthesized compounds, compound 4 exhibited the most potent antiproliferative activity, with an IC50 of 5.73 and 12.15 µM toward MCF-7 and MDA-MB-231 cells, respectively, compared to staurosporine (IC50 = 6.77 and 7.03 µM, respectively). Exploring the mechanistic insights responsible for the antiproliferative activity of compound 4 revealed that compound 4 possesses a significant inhibitory activity toward the vascular endothelial growth factor receptor-2 (VEGFR-2) with (IC50 = 0.093 µM) compared to Sorafenib (IC50 = 0.059 µM). Further, compound 4 showed the ability to induce programmed cell death by triggering apoptosis and necrosis in MCF-7 cells and to induce cell cycle arrest on MCF-7 cells at the G1 stage while decreasing the cellular population in the G2/M phase. Finally, detailed in silico molecular docking studies affirmed that this class of compounds possesses a considerable binding affinity toward VEGFR2 proteins. Overall, these results indicate that compound 4 could be a promising lead compound for developing potent anti-breast cancer compounds.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Estaurosporina/farmacologia , Relação Estrutura-Atividade , Tiazóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
13.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613653

RESUMO

With the rising incidence of hepatocellular carcinoma (HCC) from non-alcoholic steatohepatitis (NASH), identifying new metabolic readouts that function in metabolic pathway perpetuation is still a demand. The study aimed to compare the metabolic signature between NASH and NASH-HCC patients to explore novel reprogrammed metabolic pathways that might modulate cancer progression in NASH patients. NASH and NASH-HCC patients were recruited and screened for metabolomics, and isotope-labeled lipidomics were targeted and profiled using the EXION-LCTM system equipped with a Triple-TOFTM 5600+ system. Results demonstrated significantly (p ≤ 0.05) higher levels of triacylglycerol, AFP, AST, and cancer antigen 19-9 in NASH-HCC than in NASH patients, while prothrombin time, platelet count, and total leukocyte count were decreased significantly (p ≤ 0.05). Serum metabolic profiling showed a panel of twenty metabolites with 10% FDR and p ≤ 0.05 in both targeted and non-targeted analysis that could segregate NASH-HCC from NASH patients. Pathway analysis revealed that the metabolites are implicated in the down-regulation of necroptosis, amino acid metabolism, and regulation of lipid metabolism by PPAR-α, biogenic amine synthesis, fatty acid metabolism, and the mTOR signaling pathway. Cholesterol metabolism, DNA repair, methylation pathway, bile acid, and salts metabolism were significantly upregulated in NASH-HCC compared to the NASH group. Metabolite-protein interactions network analysis clarified a set of well-known protein encoding genes that play crucial roles in cancer, including PEMT, IL4I1, BAAT, TAT, CDKAL1, NNMT, PNP, NOS1, and AHCYL. Taken together, reliable metabolite fingerprints are presented and illustrated in a detailed map for the most predominant reprogrammed metabolic pathways that target HCC development from NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/metabolismo , Detecção Precoce de Câncer , Lipidômica , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais
14.
Future Med Chem ; 13(20): 1743-1766, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34427113

RESUMO

Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.


Assuntos
Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas
15.
Environ Sci Pollut Res Int ; 28(11): 13031-13046, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33484463

RESUMO

Acrylamide is a chemical monomer; its polymer compounds are used in the manufacture of plastic, papers, adhesive tapes, dyes, and food packaging. Lately, scientists found that cooking (mainly roasting, baking, and frying) yields acrylamide. In addition to fried/baked potatoes, coffee and bakery products still contain substantial amounts of acrylamide. Acrylamide has toxic effects on different body systems include genitourinary, reproductive, nervous system, along with being a carcinogenic substance. The neurotoxicity of acrylamide includes central and peripheral neuropathy. In humans, the clinical manifestations include sensory or motor peripheral neuropathy, drowsiness, or cerebellar ataxia. Likewise, it presents with skeletal muscle weakness, hindlimb dysfunction, ataxia, and weight loss in animals. The suggested mechanisms for acrylamide neurotoxicity include direct inhibition of neurotransmission, cellular changes, inhibition of key cellular enzymes, and bonding of kinesin-based fast axonal transport. Moreover, it is suggested that acrylamide's molecular effect on SNARE core kinetics is carried out through the adduction of NSF and/or SNARE proteins. Lately, scientists showed disruption of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) cell signaling pathways in human differentiating neuroblastoma SH-SY5Y cells, exposed to acrylamide. Different treatment modalities have been revealed to shield against or hasten recovery from acrylamide-induced neuropathy in preclinical studies, including phytochemical, biological, and vitamin-based compounds. Still, additional studies are needed to elucidate the pathogenesis and to identify the best treatment modality.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Solanum tuberosum , Acrilamida/toxicidade , Animais , Culinária , Humanos , Doenças do Sistema Nervoso Periférico/induzido quimicamente
16.
SLAS Discov ; 26(1): 113-121, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734807

RESUMO

There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Ceramidase Neutra/antagonistas & inibidores , Ceramidase Neutra/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ativação Enzimática/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Bibliotecas de Moléculas Pequenas
17.
Molecules ; 25(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233775

RESUMO

Cancer is one of the leading causes of death worldwide. Although several potential therapeutic agents have been developed to efficiently treat cancer, some side effects can occur simultaneously. Papaverine, a non-narcotic opium alkaloid, is a potential anticancer drug that showed selective antitumor activity in various tumor cells. Recent studies have demonstrated that metal complexes improve the biological activity of the parent bioactive ligands. Based on those facts, herein we describe the synthesis of novel papaverine-vanadium(III), ruthenium(III) and gold(III) metal complexes aiming at enhancing the biological activity of papaverine drug. The structures of the synthesized complexes were characterized by various spectroscopic methods (IR, UV-Vis, NMR, TGA, XRD, SEM). The anticancer activity of synthesized metal complexes was evaluated in vitro against two types of cancer cell lines: human breast cancer MCF-7 cells and hepatocellular carcinoma HepG-2 cells. The results revealed that papaverine-Au(III) complex, among the synthesized complexes, possess potential antimicrobial and anticancer activities. Interestingly, the anticancer activity of papaverine-Au(III) complex against the examined cancer cell lines was higher than that of the papaverine alone, which indicates that Au-metal complexation improved the anticancer activity of the parent drug. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. The biocompatibility experiments showed that Au complex is less toxic than the papaverine drug alone with IC50 ≈ 111 µg/mL. These results indicate that papaverine-Au(III) complex is a promising anticancer complex-drug which would make it a suitable candidate for further in vivo investigations.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Papaverina/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Relação Estrutura-Atividade
18.
Environ Sci Pollut Res Int ; 27(16): 19058-19072, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30499089

RESUMO

Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.


Assuntos
Nanopartículas , Nanotubos de Carbono , Animais , Embrião de Galinha , Galinhas , Diamante , Desenvolvimento Embrionário , Humanos
19.
Nat Commun ; 9(1): 5437, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575723

RESUMO

Alkaline ceramidases (ACERs) are a class of poorly understood transmembrane enzymes controlling the homeostasis of ceramides. They are implicated in human pathophysiology, including progressive leukodystrophy, colon cancer as well as acute myeloid leukemia. We report here the crystal structure of the human ACER type 3 (ACER3). Together with computational studies, the structure reveals that ACER3 is an intramembrane enzyme with a seven transmembrane domain architecture and a catalytic Zn2+ binding site in its core, similar to adiponectin receptors. Interestingly, we uncover a Ca2+ binding site physically and functionally connected to the Zn2+ providing a structural explanation for the known regulatory role of Ca2+ on ACER3 enzymatic activity and for the loss of function in E33G-ACER3 mutant found in leukodystrophic patients.


Assuntos
Ceramidase Alcalina/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Ceramidase Alcalina/química , Ceramidase Alcalina/genética , Animais , Sítios de Ligação/genética , Cálcio/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Receptores de Adiponectina/química , Células Sf9 , Spodoptera
20.
Bioorg Med Chem ; 26(14): 4047-4057, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29960730

RESUMO

Sphingolipids are ubiquitous and abundant components of all eukaryotic and some prokaryotic organisms. Sphingolipids show a large structural variety not only between the different species, but also within an individual cell. This variety is not limited to alterations in the polar headgroups of e.g. glycosphingolipids, but also affects the lipophilic anchors comprised of different fatty acids on the one hand and different sphingoid bases on the other hand. The structural variations within different sphingoid bases e.g. in pathogens can be used to identify novel biomarkers and drug targets and the specific change in the profile of common and uncommon sphingolipids are associated with pathological conditions like diabetes or cancer. Therefore, the emerging field of sphingolipidomics is dedicated to collect data on the sphingolipidome of a cell and hence to assign changes therein to certain states of a cell or to pathological conditions. This powerful tool however is still limited by the availability of structural information about the individual lipid species as well as by the availability of appropriate internal standards for quantification. Herein we describe the synthesis of a variety of 1-deoxy-sphingoid bases. 1-DeoxySphingolipids have recently acquired significant attention due to its pathological role in the rare inherited neuropathy, HSAN1 but also as predictive biomarkers in diabetes type II. Some of the compounds synthesized and characterized herein, have been used and will be used to elucidate the correct structure of these disease-related lipids and their metabolites.


Assuntos
Esfingosina/síntese química , Biomarcadores/química , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Relação Dose-Resposta a Droga , Humanos , Conformação Molecular , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA