Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microb Physiol ; 34(1): 142-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38955141

RESUMO

We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.


Assuntos
Jejum , Longevidade , Humanos , Jejum/fisiologia , Animais , Redução de Peso/fisiologia , Microbiota/fisiologia , Jejum Intermitente
2.
Microb Physiol ; 33(1): 49-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37321192

RESUMO

Members of the Piezo family of mechanically activated cation channels are involved in multiple physiological processes in higher eukaryotes, including vascular development, cell differentiation, touch perception, hearing, and more, but they are also common in single-celled eukaryotic microorganisms. Mutations in these proteins in humans are associated with a variety of diseases, such as colorectal adenomatous polyposis, dehydrated hereditary stomatocytosis, and hereditary xerocytosis. Available 3D structures for Piezo proteins show nine regions of four transmembrane segments each that have the same fold. Despite the remarkable similarity among the nine characteristic structural repeats in the family, no significant sequence similarity among them has been reported. Using bioinformatics approaches and the Transporter Classification Database (TCDB) as reference, we reliably identified sequence similarity among repeats based on four lines of evidence: (1) hidden Markov model-profile similarities across repeats at the family level, (2) pairwise sequence similarities between different repeats across Piezo homologs, (3) Piezo-specific conserved sequence signatures that consistently identify the same regions across repeats, and (4) conserved residues that maintain the same orientation and location in 3D space.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Clostridioides difficile/metabolismo , Canais Iônicos/genética , Canais Iônicos/química , Canais Iônicos/metabolismo , Mutação , Sequência Conservada
3.
Commun Biol ; 4(1): 991, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413462

RESUMO

Many genes in bacterial genomes are of unknown function, often referred to as y-genes. Recently, the analytic methods have divided bacterial transcriptomes into independently modulated sets of genes (iModulons). Functionally annotated iModulons that contain y-genes lead to testable hypotheses to elucidate y-gene function. The inversely correlated expression of a putative transporter gene, ydhC, relative to purine biosynthetic genes, has led to the hypothesis that it encodes a purine-related transporter and revealed a LysR-family regulator, YdhB, with a predicted 23-bp palindromic binding motif. RNA-Seq analysis of a ydhB knockout mutant confirmed the YdhB-dependent activation of ydhC in the presence of adenosine. The deletion of either the ydhC or the ydhB gene led to a substantially decreased growth rate for E. coli in minimal medium with adenosine, inosine, or guanosine as the nitrogen source. Taken together, we provide clear evidence that YdhB activates the expression of the ydhC gene that encodes a purine transporter in E. coli. We propose that the genes ydhB and ydhC be re-named as punR and punC, respectively.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Nucleosídeos/genética , Purinas/metabolismo , Fatores de Transcrição/genética , Transporte Biológico , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Fatores de Transcrição/metabolismo
4.
Microb Physiol ; 30(1-6): 2-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32957108

RESUMO

For decades it has been known that infectious agents including pathogenic protozoans, bacteria, and viruses, adapted to a particular animal host, can mutate to gain the ability to infect another host, and the mechanisms involved have been studied in great detail. Although an infectious agent in one animal can alter its host range with relative ease, no example of a plant virus changing its host organism to an animal has been documented. One prevalent pathway for the transmission of infectious agents between hosts involves ingestion of the flesh of one organism by another. In this article we document numerous examples of viral and prion diseases transmitted by eating animals. We suggest that the occurrence of cross-species viral epidemics can be substantially reduced by shifting to a more vegetarian diet and enforcing stricter laws that ban the slaughter and trade of wild and endangered species.


Assuntos
Epidemias , Especificidade de Hospedeiro , Vírus de Plantas , Viroses/epidemiologia , Viroses/transmissão , Viroses/veterinária , Animais , Aves , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/veterinária , Coronavirus , Dietoterapia , Ingestão de Alimentos , Ebolavirus , HIV , Humanos , Influenza Aviária , Marburgvirus , Orthomyxoviridae , Doenças Priônicas , SARS-CoV-2 , Zoonoses Virais
5.
Nat Biotechnol ; 36(1): 103-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176613

RESUMO

Bacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli. After extraction with non-denaturing detergents, we affinity-purified 785 endogenously tagged CEPs and identified stably associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising 77% of targeted CEPs, revealed many previously uncharacterized heteromeric complexes. We found that the secretion of autotransporters requires translocation and the assembly module TamB to nucleate proper folding from periplasm to cell surface through a cooperative mechanism involving the ß-barrel assembly machinery. We also establish that an ABC transporter of unknown function, YadH, together with the Mla system preserves outer membrane lipid asymmetry. This E. coli CEP 'interactome' provides insights into the functional landscape governing CE systems essential to bacterial growth, metabolism and drug resistance.


Assuntos
Membrana Celular/genética , Escherichia coli/genética , Complexos Multiproteicos/genética , Proteômica , Membrana Celular/química , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/classificação
6.
Mutat Res ; 793-794: 22-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27810619

RESUMO

Escherichia coli cells deleted for the cyclic AMP (cAMP) receptor protein (Crp) gene (Δcrp) cannot utilize glycerol because cAMP-Crp is a required activator of the glycerol utilization operon, glpFK. We have previously shown that a transposon, Insertion Sequence 5 (IS5), can insert into the upstream regulatory region of the operon to activate the glpFK promoter and enable glycerol utilization. GlpR, which represses glpFK transcription, binds to the glpFK upstream region near the site of IS5 insertion and inhibits insertion. By adding cAMP to the culture medium in ΔcyaA cells, we here show that the cAMP-Crp complex, which also binds to the glpFK upstream regulatory region, inhibits IS5 hopping into the activating site. Control experiments showed that the frequencies of mutations in response to cAMP were independent of parental cell growth rate and the selection procedure. These findings led to the prediction that glpFK-activating IS5 insertions can also occur in wild-type (Crp+) cells under conditions that limit cAMP production. Accordingly, we found that IS5 insertion into the activating site in wild-type cells is elevated in the presence of glycerol and a non-metabolizable sugar analogue that lowers cytoplasmic cAMP concentrations. The resultant IS5 insertion mutants arising in this minimal medium become dominant constituents of the population after prolonged periods of growth. The results show that DNA binding transcription factors can reversibly mask a favored transposon target site, rendering a hot spot for insertion less favored. Such mechanisms could have evolved by natural selection to overcome environmental adversity.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon/genética , Sítios de Ligação/genética , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética
7.
PLoS One ; 10(11): e0140569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536134

RESUMO

The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term "Oat-related" (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Transporte Biológico/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Evolução Biológica , Carnitina/metabolismo , Humanos , Camundongos , Família Multigênica , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína
8.
BMC Microbiol ; 13: 98, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23647830

RESUMO

BACKGROUND: The ATP-Binding Cassette (ABC) functional superfamily includes integral transmembrane exporters that have evolved three times independently, forming three families termed ABC1, ABC2 and ABC3, upon which monophyletic ATPases have been superimposed for energy-coupling purposes [e.g., J Membr Biol 231(1):1-10, 2009]. The goal of the work reported in this communication was to understand how the integral membrane constituents of ABC uptake transporters with different numbers of predicted or established transmembrane segments (TMSs) evolved. In a few cases, high resolution 3-dimensional structures were available, and in these cases, their structures plus primary sequence analyses allowed us to predict evolutionary pathways of origin. RESULTS: All of the 35 currently recognized families of ABC uptake proteins except for one (family 21) were shown to be homologous using quantitative statistical methods. These methods involved using established programs that compare native protein sequences with each other, after having compared each sequence with thousands of its own shuffled sequences, to gain evidence for homology. Topological analyses suggested that these porters contain numbers of TMSs ranging from four or five to twenty. Intragenic duplication events occurred multiple times during the evolution of these porters. They originated from a simple primordial protein containing 3 TMSs which duplicated to 6 TMSs, and then produced porters of the various topologies via insertions, deletions and further duplications. Except for family 21 which proved to be related to ABC1 exporters, they are all related to members of the previously identified ABC2 exporter family. Duplications that occurred in addition to the primordial 3 → 6 duplication included 5 → 10, 6 → 12 and 10 → 20 TMSs. In one case, protein topologies were uncertain as different programs gave discrepant predictions. It could not be concluded with certainty whether a 4 TMS ancestral protein or a 5 TMS ancestral protein duplicated to give an 8 or a 10 TMS protein. Evidence is presented suggesting but not proving that the 2TMS repeat unit in ABC1 porters derived from the two central TMSs of ABC2 porters. These results provide structural information and plausible evolutionary pathways for the appearance of most integral membrane constituents of ABC uptake transport systems. CONCLUSIONS: Almost all integral membrane uptake porters of the ABC superfamily belong to the ABC2 family, previously established for exporters. Most of these proteins can have 5, 6, 10, 12 or 20 TMSs per polypeptide chain. Evolutionary pathways for their appearance are proposed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Evolução Molecular , Transportadores de Cassetes de Ligação de ATP/química , Modelos Moleculares , Conformação Proteica
9.
J Membr Biol ; 241(2): 77-101, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21519847

RESUMO

Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation-contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.


Assuntos
Canais Iônicos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Archaea/genética , Bactérias/genética , Biologia Computacional , Mineração de Dados , Evolução Molecular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
J Mol Microbiol Biotechnol ; 19(1-2): 5-104, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20962537

RESUMO

P-type ATPases function to provide homeostasis in higher eukaryotes, but they are essentially ubiquitous, being found in all domains of life. Thever and Saier [J Memb Biol 2009;229:115-130] recently reported analyses of eukaryotic P-type ATPases, dividing them into nine functionally characterized and 13 functionally uncharacterized (FUPA) families. In this report, we analyze P-type ATPases in all major prokaryotic phyla for which complete genome sequence data are available, and we compare the results with those for eukaryotic P-type ATPases. Topological type I (heavy metal) P-type ATPases predominate in prokaryotes (approx. tenfold) while type II ATPases (specific for Na(+),K(+), H(+) Ca(2+), Mg(2+) and phospholipids) predominate in eukaryotes (approx. twofold). Many P-type ATPase families are found exclusively in prokaryotes (e.g. Kdp-type K(+) uptake ATPases (type III) and all ten prokaryotic FUPA familes), while others are restricted to eukaryotes (e.g. phospholipid flippases and all 13 eukaryotic FUPA families). Horizontal gene transfer has occurred frequently among bacteria and archaea, which have similar distributions of these enzymes, but rarely between most eukaryotic kingdoms, and even more rarely between eukaryotes and prokaryotes. In some bacterial phyla (e.g. Bacteroidetes, Flavobacteria and Fusobacteria), ATPase gene gain and loss as well as horizontal transfer occurred seldom in contrast to most other bacterial phyla. Some families (i.e. Kdp-type ATPases) underwent far less horizontal gene transfer than other prokaryotic families, possibly due to their multisubunit characteristics. Functional motifs are better conserved across family lines than across organismal lines, and these motifs can be family specific, facilitating functional predictions. In some cases, gene fusion events created P-type ATPases covalently linked to regulatory catalytic enzymes. In one family (FUPA Family 24), a type I ATPase gene (N-terminal) is fused to a type II ATPase gene (C-terminal) with retention of function only for the latter. Several pseudogene-encoded nonfunctional ATPases were identified. Genome minimalization led to preferential loss of P-type ATPase genes. We suggest that in prokaryotes and some unicellular eukaryotes, the primary function of P-type ATPases is protection from extreme environmental stress conditions. The classification of P-type ATPases of unknown function into phylogenetic families provides guides for future molecular biological studies.


Assuntos
Adenosina Trifosfatases/classificação , Motivos de Aminoácidos , Archaea/enzimologia , Bactérias/enzimologia , Eucariotos/enzimologia , Adenosina Trifosfatases/genética , Archaea/genética , Bactérias/genética , Sequência de Bases , Sequência Conservada , Eucariotos/genética , Transferência Genética Horizontal , Genoma Bacteriano , Bombas de Íon/metabolismo , Transporte de Íons , Dados de Sequência Molecular , Filogenia , Pseudogenes
11.
J Membr Biol ; 231(1): 1-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19806386

RESUMO

The ATP-binding cassette (ABC) superfamily consists of both importers and exporters. These transporters have, by tradition, been classified according to the ATP hydrolyzing constituents, which are monophyletic. The evolutionary origins of the transmembrane porter proteins/domains are not known. Using five distinct computer programs, we here provide convincing statistical data suggesting that the transmembrane domains of ABC exporters are polyphyletic, having arisen at least three times independently. ABC1 porters arose by intragenic triplication of a primordial two-transmembrane segment (TMS)-encoding genetic element, yielding six TMS proteins. ABC2 porters arose by intragenic duplication of a dissimilar primordial three-TMS-encoding genetic element, yielding a distinctive protein family, nonhomologous to the ABC1 proteins. ABC3 porters arose by duplication of a primordial four-TMS-encoding genetic element, yielding either eight- or 10-TMS proteins. We assign each of 48 of the 50 currently recognized families of ABC exporters to one of the three evolutionarily distinct ABC types. Currently available high-resolution structural data for ABC porters are fully consistent with our findings. These results provide guides for future structural and mechanistic studies of these important transport systems.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico/genética , Evolução Molecular , Transportadores de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Biologia Computacional , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
12.
J Membr Biol ; 229(3): 115-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19548020

RESUMO

P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. In this study, the fully sequenced genomes of 26 eukaryotes, including animals, plants, fungi and unicellular eukaryotes, were analyzed for P-type ATPases. We report the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. We have classified these proteins according to the conventions of the functional and phylogenetic IUBMB-approved transporter classification system ( www.tcdb.org , Saier et al. in Nucleic Acids Res 34:181-186, 2006; Nucleic Acids Res 37:274-278, 2009).


Assuntos
Adenosina Trifosfatases/genética , Biologia Computacional , Células Eucarióticas/metabolismo , Adenosina Trifosfatases/classificação , Animais , Humanos , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética
13.
Biochim Biophys Acta ; 1758(10): 1557-79, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16905115

RESUMO

"Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.


Assuntos
Canais Iônicos/química , Estrutura Terciária de Proteína , Transporte Proteico , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos/química , Inibidor da Tripsina Pancreática de Kazal/química
14.
J Mol Microbiol Biotechnol ; 11(1-2): 1-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16825785

RESUMO

Oxidase-dependent ferrous iron uptake transporters of the OFeT family and lead uptake transporters of the PbrT family comprise the iron/lead transporter (ILT) superfamily (transporter classification No. 9.A.10). All sequenced homologues of the ILT superfamily were multiply aligned, and conserved motifs, including fully conserved acidic residues in putative transmembrane segments (TMSs) 1 and 4, previously implicated in heavy metal binding, were identified. Topological analyses confirmed the presence of 7 conserved TMSs in a 3 + 3 + 1 arrangement where the two 3 TMS elements are internally repeated. Phylogenetic analyses revealed the presence of several sequence divergent clusters of orthologous proteins that group roughly according to the phylogenes of the organisms of origin. The results serve to characterize and provide evolutionary insight into a novel superfamily of heavy metal uptake transporters.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Sequência Conservada , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
15.
Res Microbiol ; 156(2): 270-7, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15748994

RESUMO

The ATP binding cassette (ABC) superfamily consists of dozens of families of transport systems, each of which catalyzes uptake or efflux of a specific type of molecule using ATP hydrolysis to energize transport. While all of the ATP hydrolyzing subunits in the superfamily are homologous, a monophyletic origin of the integral membrane constituents is not established. We have identified a subset of these transmembrane proteins that have a basal unit of four transmembrane alpha-helical segments (TMSs) with a large extracytoplasmic domain between TMSs 1 and 2. These homologues were found to exhibit 4, 8 or 10 putative TMSs per polypeptide chain. The two larger topological types exhibit a 4 TMS repeat element resulting from an internal gene duplication event, and the 10 TMS proteins display an extra two putative TMSs between the two repeat units. Rare intragenic deletions in these homologues gave rise to truncated proteins lacking the extracytoplasmic domain, and some phylogenetic clusters of the 4 TMS membrane proteins (but not the 8 or 10 TMS proteins) are fused N-terminal (never C-terminal) to ATP hydrolyzing domains. Bioinformatic analyses lead to the suggestion that in the larger homologues, the second repeat units are more important for function than the first repeat units. Operon analyses suggest that the 4 TMS proteins form heterodimeric complexes while the 8 and 10 TMS proteins incorporate the equivalent of these complexes into single integral membrane polypeptide chains. Different gene compositions of the operons encoding the 4 versus 8 and 10 TMS homologues suggest that these two structural types of transporters act on different types of substrates and serve dissimilar functions. Significant sequence similarity between the integral membrane constituents of the ABC efflux pumps analyzed here and those of other ABC transporters could not be detected. These studies define the evolutionary pathway taken for the appearance of a subset of ABC transmembrane transport proteins and provide clues regarding their mechanistic and functional characteristics.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Biologia Computacional/métodos , Proteínas de Membrana/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Evolução Molecular , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
16.
J Biol Chem ; 280(12): 12028-34, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15661733

RESUMO

The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.


Assuntos
Carbono-Enxofre Ligases/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Catálise , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo
17.
Biochemistry ; 44(2): 598-608, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15641785

RESUMO

Treponema pallidum and Treponema denticola encode within their genomes homologues of energy coupling and regulatory proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) but no recognizable homologues of PTS permeases. These homologues include (1) Enzyme I, (2) HPr, (3) two IIA(Ntr)-like proteins, and (4) HPr(Ser) kinase/phosphorylase (HprK). Because the Enzyme I-encoding gene in T. pallidum is an inactive pseudogene and because all other pts genes in both T. pallidum and T. denticola are actively expressed, the primary sensory transduction mechanism for signal detection and transmission appears to involve HprK rather than EI. We have overexpressed and purified to near homogeneity four of the five PTS proteins from T. denticola. Purified HprK phosphorylates HPr with ATP, probably on serine, while Enzyme I phosphorylates HPr with PEP, probably on histidine. Furthermore, HPr(His)-P can transfer its phosphoryl group to IIA(Ntr)-1. Factors and conditions regulating phosphoryl transfer prove to differ from those described previously for Bacillus subtilis, but cross-enzymatic activities between the Treponema, Salmonella, and Bacillus phosphoryl-transfer systems could be demonstrated. Kinetic analyses revealed that the allosterically regulated HPr kinase/phosphorylase differs from its homologues in Bacillus subtilis and other low G+C Gram-positive bacteria in being primed for kinase activity rather than phosphorylase activity in the absence of allosteric effectors. The characteristics of this enzyme and the Treponema phosphoryl-transfer chain imply unique modes of signal detection and sensory transmission. This paper provides the first biochemical description of PTS phosphoryl-transfer chains in an organism that lacks PTS permeases.


Assuntos
Proteínas de Transporte de Fosfato/deficiência , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases (Aceptor do Grupo Nitrogenado)/química , Fosfotransferases (Aceptor do Grupo Nitrogenado)/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Treponema denticola/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas de Transporte de Fosfato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/isolamento & purificação , Radioisótopos de Fósforo/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Nitrogenado)/genética , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Treponema denticola/genética , Treponema pallidum/enzimologia , Treponema pallidum/genética
18.
J Bacteriol ; 187(3): 980-90, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659676

RESUMO

In Escherichia coli, the ferric uptake regulator (Fur) controls expression of the iron regulon in response to iron availability while the cyclic AMP receptor protein (Crp) regulates expression of the carbon regulon in response to carbon availability. We here identify genes subject to significant changes in expression level in response to the loss of both Fur and Crp. Many iron transport genes and several carbon metabolic genes are subject to dual control, being repressed by the loss of Crp and activated by the loss of Fur. However, the sodB gene, encoding superoxide dismutase, and the aceBAK operon, encoding the glyoxalate shunt enzymes, show the opposite responses, being activated by the loss of Crp and repressed by the loss of Fur. Several other genes including the sdhA-D, sucA-D, and fumA genes, encoding key constituents of the Krebs cycle, proved to be repressed by the loss of both transcription factors. Finally, the loss of both Crp and Fur activated a heterogeneous group of genes under sigmaS control encoding, for example, the cyclopropane fatty acid synthase, Cfa, the glycogen synthesis protein, GlgS, the 30S ribosomal protein, S22, and the mechanosensitive channel protein, YggB. Many genes appeared to be regulated by the two transcription factors in an apparently additive fashion, but apparent positive or negative cooperativity characterized several putative Crp/Fur interactions. Relevant published data were evaluated, putative Crp and Fur binding sites were identified, and representative results were confirmed by real-time PCR. Molecular explanations for some, but not all, of these effects are provided.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ferro/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Proteína Receptora de AMP Cíclico , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Cinética , Hibridização de Ácido Nucleico , Fenótipo , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Receptores de Superfície Celular/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Fatores de Transcrição/genética
19.
J Mol Microbiol Biotechnol ; 8(3): 129-40, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16088215

RESUMO

YedZ of Escherichia coli is an integral 6 transmembrane spanning (TMS) protein of unknown function. We have identified homologues of YedZ in bacteria and animals but could not find homologues in Archaea or the other eukaryotic kingdoms. YedZ homologues exhibit conserved histidyl residues in their transmembrane domains that may function in heme binding. Some of the homologues encoded in the genomes of magnetotactic bacteria and cyanobacteria have YedZ domains fused to transport and electron transfer proteins, respectively. One of the animal homologues is the 6 TMS epithelial plasma membrane antigen of the prostate (STAMP1) that is overexpressed in prostate cancer. Animal homologues have YedZ domains fused C-terminal to homologues of coenzyme F420-dependent NADP oxidoreductases. YedZ homologues are shown to have arisen by intragenic triplication of a 2 TMS-encoding element. They exhibit slight but statistically significant sequence similarity to two families of putative heme export systems and one family of cytochrome-containing electron carriers. We propose that YedZ homologues function as heme-binding proteins that can facilitate or regulate oxidoreduction, transmembrane electron flow and transport.


Assuntos
Proteínas de Escherichia coli/genética , Evolução Molecular , Proteínas de Membrana Transportadoras/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Biologia Computacional , Sequência Conservada , Transporte de Elétrons , Proteínas de Escherichia coli/química , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Oxirredutases , Filogenia , Homologia de Sequência de Aminoácidos
20.
J Mol Microbiol Biotechnol ; 8(3): 169-76, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16088218

RESUMO

The sulfate permease (SulP) family of secondary carriers (TC #2.A.53) includes functionally characterized members that are inorganic anion:H+ symporters and anion:anion antiporters. We here describe members of this family that are fused to non-transporter domains, a relatively rare occurrence in prokaryotes. One subfamily includes members that are either fused to or are encoded within operons that also encode homologues of carbonic anhydrases, suggesting that these carriers function to take up bicarbonate or carbonate. Within another subfamily, a SulP homologue is fused to rhodanese, a thiosulfate:cyanide sulfotransferase, suggesting that this carrier functions in sulfate uptake. Some homologues are encoded in operons that also encode putative Na+/H+ antiporters of the NhaD family (TC #2.A.62) or putative Na+:HCO3- symporters of the SBT family (TC #2.A.83). SulP homologues present in fungi and some bacteria are fused to cyclic AMP-binding domains and STAS domains that presumably function in regulation or targeting. Phylogenetic analyses reveal the relationships of these proteins and protein domains to each other and show that in some cases, but not in others, the hydrophilic domains/proteins have coevolved with the transporters.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Bactérias/metabolismo , Bicarbonatos/metabolismo , Anidrases Carbônicas/metabolismo , Proteínas de Transporte de Ânions/genética , Transporte Biológico , Anidrases Carbônicas/genética , Biologia Computacional , AMP Cíclico/metabolismo , Fusão Gênica , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA