Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(2): 249-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238430

RESUMO

Sleep interacts reciprocally with immune system activity, but its specific relationship with microglia-the resident immune cells in the brain-remains poorly understood. Here, we show in mice that microglia can regulate sleep through a mechanism involving Gi-coupled GPCRs, intracellular Ca2+ signaling and suppression of norepinephrine transmission. Chemogenetic activation of microglia Gi signaling strongly promoted sleep, whereas pharmacological blockade of Gi-coupled P2Y12 receptors decreased sleep. Two-photon imaging in the cortex showed that P2Y12-Gi activation elevated microglia intracellular Ca2+, and blockade of this Ca2+ elevation largely abolished the Gi-induced sleep increase. Microglia Ca2+ level also increased at natural wake-to-sleep transitions, caused partly by reduced norepinephrine levels. Furthermore, imaging of norepinephrine with its biosensor in the cortex showed that microglia P2Y12-Gi activation significantly reduced norepinephrine levels, partly by increasing the adenosine concentration. These findings indicate that microglia can regulate sleep through reciprocal interactions with norepinephrine transmission.


Assuntos
Cálcio , Microglia , Camundongos , Animais , Norepinefrina , Transdução de Sinais/fisiologia , Sono
2.
Dev Cell ; 56(19): 2712-2721.e4, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496290

RESUMO

Cancer patients often die from symptoms that manifest at a distance from any tumor. Mechanisms underlying these systemic physiological perturbations, called paraneoplastic syndromes, may benefit from investigation in non-mammalian systems. Using a non-metastatic Drosophila adult model, we find that malignant-tumor-produced cytokines drive widespread host activation of JAK-STAT signaling and cause premature lethality. STAT activity is particularly high in cells of the blood-brain barrier (BBB), where it induces aberrant BBB permeability. Remarkably, inhibiting STAT in the BBB not only rescues barrier function but also extends the lifespan of tumor-bearing hosts. We identify BBB damage in other pathological conditions that cause elevated inflammatory signaling, including obesity and infection, where BBB permeability also regulates host survival. IL-6-dependent BBB dysfunction is further seen in a mouse tumor model, and it again promotes host morbidity. Therefore, BBB alterations constitute a conserved lethal tumor-host interaction that also underlies other physiological morbidities.


Assuntos
Barreira Hematoencefálica/fisiologia , Síndromes Paraneoplásicas/fisiopatologia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Citocinas , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Endoteliais/metabolismo , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Permeabilidade , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia
3.
Front Mol Neurosci ; 14: 717411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531723

RESUMO

Interestingly, more males are diagnosed with autism spectrum disorder (ASD) than females, yet the mechanism behind this difference is unclear. Genes on the sex chromosomes and differential regulation by sex steroid hormones and their receptors are both candidate mechanisms to explain this sex-dependent phenotype. Nuclear receptors (NRs) are a large family of transcription factors, including sex hormone receptors, that mediate ligand-dependent transcription and may play key roles in sex-specific regulation of immunity and brain development. Infection during pregnancy is known to increase the probability of developing ASD in humans, and a mouse model of maternal immune activation (MIA), which is induced by injecting innate immune stimulants into pregnant wild-type mice, is commonly used to study ASD. Since this model successfully recaptures the behavioral phenotypes and male bias observed in ASD, we will discuss the potential role of sex steroid hormones and their receptors, especially focusing on estrogen receptor (ER)ß, in MIA and how this signaling may modulate transcription and subsequent inflammation in myeloid-lineage cells to contribute to the etiology of this neurodevelopmental disorder.

4.
Nat Metab ; 3(5): 618-635, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031590

RESUMO

Macrophages generate mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species as antimicrobials during Toll-like receptor (TLR)-dependent inflammatory responses. Whether mitochondrial stress caused by these molecules impacts macrophage function is unknown. Here, we demonstrate that both pharmacologically driven and lipopolysaccharide (LPS)-driven mitochondrial stress in macrophages triggers a stress response called mitohormesis. LPS-driven mitohormetic stress adaptations occur as macrophages transition from an LPS-responsive to LPS-tolerant state wherein stimulus-induced pro-inflammatory gene transcription is impaired, suggesting tolerance is a product of mitohormesis. Indeed, like LPS, hydroxyoestrogen-triggered mitohormesis suppresses mitochondrial oxidative metabolism and acetyl-CoA production needed for histone acetylation and pro-inflammatory gene transcription, and is sufficient to enforce an LPS-tolerant state. Thus, mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species are TLR-dependent signalling molecules that trigger mitohormesis as a negative feedback mechanism to restrain inflammation via tolerance. Moreover, bypassing TLR signalling and pharmacologically triggering mitohormesis represents a new anti-inflammatory strategy that co-opts this stress response to impair epigenetic support of pro-inflammatory gene transcription by mitochondria.


Assuntos
Reprogramação Celular , Metabolismo Energético , Tolerância Imunológica , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Acetilcoenzima A/metabolismo , Anti-Inflamatórios/farmacologia , Estrogênios/metabolismo , Regulação da Expressão Gênica , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
5.
J Am Chem Soc ; 140(19): 6109-6121, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29722974

RESUMO

Hydrogen peroxide (H2O2) is a central reactive oxygen species (ROS) that contributes to diseases from obesity to cancer to neurodegeneration but is also emerging as an important signaling molecule. We now report a versatile histochemical approach for detection of H2O2 that can be employed across a broad range of cell and tissue specimens in both healthy and disease states. We have developed a first-generation H2O2-responsive analogue named Peroxymycin-1, which is based on the classic cell-staining molecule puromycin and enables covalent staining of biological samples and retains its signal after fixation. H2O2-mediated boronate cleavage uncages the puromycin aminonucleoside, which leaves a permanent and dose-dependent mark on treated biological specimens that can be detected with high sensitivity and precision through a standard immunofluorescence assay. Peroxymycin-1 is selective and sensitive enough to image both exogenous and endogenous changes in cellular H2O2 levels and can be exploited to profile resting H2O2 levels across a panel of cell lines to distinguish metastatic, invasive cancer cells from less invasive cancer and nontumorigenic counterparts, based on correlations with ROS status. Moreover, we establish that Peroxymycin-1 is an effective histochemical probe for in vivo H2O2 analysis, as shown through identification of aberrant elevations in H2O2 levels in liver tissues in a murine model of nonalcoholic fatty liver disease, thus demonstrating the potential of this approach for studying disease states and progression associated with H2O2. This work provides design principles that should enable development of a broader range of histochemical probes for biological use that operate via activity-based sensing.


Assuntos
Peróxido de Hidrogênio/análise , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Puromicina/análogos & derivados , Puromicina/análise , Puromicina/química , Animais , Dieta Hiperlipídica/efeitos adversos , Corantes Fluorescentes/química , Células HeLa , Histocitoquímica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Estrutura Molecular , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Coloração e Rotulagem , Células Tumorais Cultivadas
6.
Proc Natl Acad Sci U S A ; 115(2): E244-E252, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29263096

RESUMO

Hematopoietic stem cells (HSCs) maintain a quiescent state during homeostasis, but with acute infection, they exit the quiescent state to increase the output of immune cells, the so-called "emergency hematopoiesis." However, HSCs' response to severe infection during septic shock and the pathological impact remain poorly elucidated. Here, we report that the histone demethylase KDM1A/LSD1, serving as a critical regulator of mammalian hematopoiesis, is a negative regulator of the response to inflammation in HSCs during endotoxic shock typically observed during acute bacterial or viral infection. Inflammation-induced LSD1 deficiency results in an acute expansion of a pathological population of hyperproliferative and hyperinflammatory myeloid progenitors, resulting in a septic shock phenotype and acute death. Unexpectedly, in vivo administration of bacterial lipopolysaccharide (LPS) to wild-type mice results in acute suppression of LSD1 in HSCs with a septic shock phenotype that resembles that observed following induced deletion of LSD1 The suppression of LSD1 in HSCs is caused, at least in large part, by a cohort of inflammation-induced microRNAs. Significantly, reconstitution of mice with bone marrow progenitor cells expressing inhibitors of these inflammation-induced microRNAs blocked the suppression of LSD1 in vivo following acute LPS administration and prevented mortality from endotoxic shock. Our results indicate that LSD1 activators or miRNA antagonists could serve as a therapeutic approach for life-threatening septic shock characterized by dysfunction of HSCs.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Histona Desmetilases/metabolismo , Homeostase/fisiologia , Choque Séptico/patologia , Animais , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs
7.
J Biol Chem ; 288(50): 35812-23, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24189069

RESUMO

25-Hydroxycholesterol (25OHC) is an enzymatically derived oxidation product of cholesterol that modulates lipid metabolism and immunity. 25OHC is synthesized in response to interferons and exerts broad antiviral activity by as yet poorly characterized mechanisms. To gain further insights into the basis for antiviral activity, we evaluated time-dependent responses of the macrophage lipidome and transcriptome to 25OHC treatment. In addition to altering specific aspects of cholesterol and sphingolipid metabolism, we found that 25OHC activates integrated stress response (ISR) genes and reprograms protein translation. Effects of 25OHC on ISR gene expression were independent of liver X receptors and sterol-response element-binding proteins and instead primarily resulted from activation of the GCN2/eIF2α/ATF4 branch of the ISR pathway. These studies reveal that 25OHC activates the integrated stress response, which may contribute to its antiviral activity.


Assuntos
Hidroxicolesteróis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Ésteres do Colesterol/metabolismo , Perfilação da Expressão Gênica , Hidroxicolesteróis/metabolismo , Receptores X do Fígado , Macrófagos/citologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingolipídeos/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores
8.
Semin Arthritis Rheum ; 43(3): 405-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23992800

RESUMO

OBJECTIVE: Amyloid deposition in multiple myeloma (MM) may lead to an arthropathy resembling rheumatoid arthritis (RA). Since a systematic description of its natural history is lacking, we have performed a systematic analysis of all published cases. METHODS: Literature review featuring backward and forward database searches and direct inspection of reference lists. Inclusion criteria were as follows: publication between 1931 and 2012, diagnosis of multiple myeloma, and demonstration of light chain amyloid (AL) in any organ or in synovial fluid, arthritis, or synovitis. RESULTS: Overall, 101 cases were identified. Median age was 59 years and the male-to-female ratio was 1:1. A systemic manifestation of MM was reported in 88 cases. In 53 of these, characteristic physical findings (carpal tunnel syndrome, macroglossia, shoulder pad, and soft tissue swelling/masses) were present. Arthritis manifested before the diagnosis of MM in 63 cases, with 33 cases initially misdiagnosed as RA. There were 72 cases of poly-, 17 of oligo-, and three of monoarthritis. The shoulder joint was most commonly affected, followed by knees and small hand joints. Median synovial fluid leukocyte count was 2460 cells/mm(3), and was normal in seven cases. Synovial histopathology often featured mild synovitis without plasma cell infiltration. Imaging revealed articular or periarticular inflammation in many cases and bone lesions near 22% of affected joints. Treatments varied but led to some improvement in the majority of cases. CONCLUSIONS: These results solidify previous experience that MM arthropathy tends to feature a symmetric RF-negative nonerosive polyarthritis. However, the results also highlight the diversity of its presentations and stress the importance of arthropathy as a potentially under-recognized presenting manifestation of MM.


Assuntos
Amiloidose/complicações , Artrite/complicações , Artropatias/complicações , Mieloma Múltiplo/complicações , Sinovite/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Amiloidose/patologia , Artrite/patologia , Feminino , Humanos , Artropatias/patologia , Articulações/patologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Sinovite/patologia
9.
Nat Rev Immunol ; 11(11): 775-87, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22025055

RESUMO

Microglia - resident myeloid-lineage cells in the brain and the spinal cord parenchyma - function in the maintenance of normal tissue homeostasis. Microglia also act as sentinels of infection and injury, and participate in both innate and adaptive immune responses in the central nervous system. Microglia can become activated and/or dysregulated in the context of neurodegenerative disease and cancer, and thereby contribute to disease severity. Here, we discuss recent studies that provide new insights into the origin and phenotypes of microglia in health and disease.


Assuntos
Encéfalo/imunologia , Microglia/imunologia , Células Mieloides/imunologia , Medula Espinal/imunologia , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem da Célula/imunologia , Expressão Gênica , Humanos , Microglia/citologia , Microglia/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Fenótipo , Medula Espinal/citologia , Medula Espinal/metabolismo
10.
Cell ; 145(4): 584-95, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565615

RESUMO

Microglia and astrocytes play essential roles in the maintenance of homeostasis within the central nervous system, but mechanisms that control the magnitude and duration of responses to infection and injury remain poorly understood. Here, we provide evidence that 5-androsten-3ß,17ß-diol (ADIOL) functions as a selective modulator of estrogen receptor (ER)ß to suppress inflammatory responses of microglia and astrocytes. ADIOL and a subset of synthetic ERß-specific ligands, but not 17ß-estradiol, mediate recruitment of CtBP corepressor complexes to AP-1-dependent promoters, thereby repressing genes that amplify inflammatory responses and activate Th17 T cells. Reduction of ADIOL or ERß expression results in exaggerated inflammatory responses to TLR4 agonists. Conversely, the administration of ADIOL or synthetic ERß-specific ligands that promote CtBP recruitment prevents experimental autoimmune encephalomyelitis in an ERß-dependent manner. These findings provide evidence for an ADIOL/ERß/CtBP-transrepression pathway that regulates inflammatory responses in microglia and can be targeted by selective ERß modulators.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Receptor beta de Estrogênio/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Transdução de Sinais , 17-Hidroxiesteroide Desidrogenases/metabolismo , Oxirredutases do Álcool/metabolismo , Androstenodiol/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
11.
Genome Biol Evol ; 3: 272-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21383383

RESUMO

The Sonoda-Tajima Cell Collection includes cell samples obtained from a range of ethnic minority groups across the world but in particular from South America. The collection is made all the more valuable by the fact that some of these ethnic populations have since died out, and thus it will be impossible to prepare a similar cell collection again. The collection was donated to our institute, a public cell bank in Japan, by Drs Sonoda and Tajima to make it available to researchers throughout the world. The original cell collection was composed of cryopreserved peripheral blood samples that would obviously have been rapidly exhausted if used directly. We, therefore, immortalized some samples with the Epstein-Barr virus and established B-lymphoblastoid cell lines (B-LCLs). As there is continuing controversy over whether the B-LCL genome is stably maintained, we performed an array comparative genomic hybridization (CGH) analysis to confirm the genomic stability of the cell lines. The array CGH analysis of the B-LCL lines and their parental B cells demonstrated that genomic stability was maintained in the long-term cell cultures. The B-LCLs of the Sonoda-Tajima Collection will therefore be made available to interested scientists around the world. At present, 512 B-LCLs have been developed, and we are willing to increase the number if there is sufficient demand.


Assuntos
Bancos de Espécimes Biológicos , Linhagem Celular Transformada , Etnicidade/genética , Genética Médica , Linfócitos B/citologia , Linfócitos B/virologia , Transformação Celular Viral/genética , Hibridização Genômica Comparativa , Infecções por Vírus Epstein-Barr/genética , Instabilidade Genômica/genética , Herpesvirus Humano 4 , Humanos , Japão , Cariotipagem , América do Sul/etnologia
12.
Nature ; 470(7334): 414-8, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21331046

RESUMO

Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which nuclear receptor co-repressor (NCoR) complexes are actively removed from the promoters of target genes to relieve basal repression. Ligand-dependent SUMOylation of liver X receptors (LXRs) has been found to suppress TLR4-induced transcription potently by preventing the NCoR clearance step, but the underlying mechanisms remain enigmatic. Here we provide evidence that coronin 2A (CORO2A), a component of the NCoR complex of previously unknown function, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/SUMO3-interaction motif in CORO2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)-dependent phosphorylation of LXRs, leading to their deSUMOylation by the SUMO protease SENP3 and release from CORO2A. These findings uncover a CORO2A-actin-dependent mechanism for the de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and by nuclear receptor signalling pathways that control immunity and homeostasis.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Proteínas dos Microfilamentos/metabolismo , Actinas/química , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Cisteína Endopeptidases , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Homeostase/genética , Humanos , Lipopolissacarídeos/farmacologia , Receptores X do Fígado , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Receptores Nucleares Órfãos/metabolismo , Peptídeo Hidrolases/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Sumoilação , Tioglicolatos/farmacologia , Receptores Toll-Like/metabolismo
13.
Pediatr Rheumatol Online J ; 9(1): 5, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21284882

RESUMO

Spinal epidural lipomatosis is a rare complication of chronic corticosteroid treatment. We report a new pediatric case and an analysis of this and 19 pediatric cases identified in the international literature. The youngest of these combined 20 patients was 5 years old when lipomatosis was diagnosed. Lipomatosis manifested after a mean of 1.3 (+/- 1.5) years (SD) (median, 0.8 years; range, 3 weeks - 6.5 years) of corticosteroid treatment. The corticosteroid dose at the time of presentation of the lipomatosis ranged widely, between 5 and 80 mg of prednisone/day. Back pain was the most common presenting symptom. Imaging revealed that lipomatosis almost always involved the thoracic spine, extending into the lumbosacral region in a subset of patients. Predominantly lumbosacral involvement was documented in only two cases. Although a neurological deficit at presentation was documented in about half of the cases, surgical decompression was not performed in the cases reported after 1996. Instead, reducing the corticosteroid dose (sometimes combined with dietary restriction to mobilize fat) sufficed to induce remission. In summary, pediatric spinal epidural lipomatosis remains a potentially serious untoward effect of corticosteroid treatment, which, if recognized in a timely manner, can have a good outcome with conservative treatment.

14.
Nat Rev Immunol ; 10(5): 365-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20414208

RESUMO

Members of the nuclear receptor superfamily of ligand-dependent transcription factors regulate diverse aspects of immunity and inflammation by both positively and negatively regulating gene expression. Here, we review recent studies providing insights into the distinct mechanisms that enable nuclear receptors to antagonize pro-inflammatory programmes of gene expression in macrophages and T cells by altering the turnover or recruitment of co-repressors and co-activators in a gene-specific manner. These nuclear receptor-dependent transrepression pathways are proposed to have roles in controlling the initiation, magnitude and duration of pro-inflammatory gene expression and are amenable to pharmacological manipulation.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Correpressor 1 de Receptor Nuclear/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Linfócitos T/imunologia , Animais , Humanos , Receptores X do Fígado , Correpressor 2 de Receptor Nuclear/fisiologia , Receptores Nucleares Órfãos/fisiologia , PPAR gama/fisiologia , Receptores de Glucocorticoides/fisiologia , Ativação Transcricional
15.
Hum Cell ; 22(3): 81-4, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19624309

RESUMO

Immortalized cell lines, such as human cancer cell lines, are an indispensable experimental resource for many types of biological and medical research. However, unless the cell line has been authenticated prior to use, interpretation of experimental results may be problematic. The potential problems this may cause are illustrated by studies in which authentication of cell lines has not been carried out. For example, immortalized cell lines may unknowingly be infected with viruses that alter their characteristics. In fact, parainfluenza virus type 5 (PIV5) poses a threat to the use of immortalized cell lines in biological and medical research; PIV5 infection significantly alters cellular physiology associated with the response to interferon. If PIV5 infection is widespread in immortalized cell lines, then a very large number of published studies might have to be re-evaluated. Fortunately, analyses of a large number of immortalized cell lines indicate that PIV5 infection is not widespread.


Assuntos
Linhagem Celular Tumoral/virologia , Rubulavirus/patogenicidade , Western Blotting , Humanos , Rubulavirus/genética , Rubulavirus/isolamento & purificação , Fator de Transcrição STAT1/metabolismo , Bancos de Tecidos , Proteínas Virais/fisiologia
16.
Cell ; 137(1): 47-59, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19345186

RESUMO

Nurr1, an orphan nuclear receptor, plays an essential role in the generation and maintenance of dopaminergic neurons in the brain. Rare mutations in Nurr1 are associated with familial Parkinson's disease, but the underlying basis for this relationship has not been established. Here, we demonstrate that Nurr1 unexpectedly functions to inhibit expression of pro-inflammatory neurotoxic mediators in both microglia and astrocytes. Reduced Nurr1 expression results in exaggerated inflammatory responses in microglia that are further amplified by astrocytes, leading to the production of factors that cause death of tyrosine hydroxylase-expressing neurons. Nurr1 exerts anti-inflammatory effects by docking to NF-kappaB-p65 on target inflammatory gene promoters in a signal-dependent manner. Subsequently, Nurr1 recruits the CoREST corepressor complex, resulting in clearance of NF-kappaB-p65 and transcriptional repression. These studies suggest that Nurr1 protects against loss of dopaminergic neurons in Parkinson's disease in part by limiting the production of neurotoxic mediators by microglia and astrocytes.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas Correpressoras , Dopamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Proteínas Repressoras/metabolismo , Transdução de Sinais , Substância Negra/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica
17.
Stem Cells ; 25(7): 1610-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17395773

RESUMO

MSCs and mesenchymal progenitor cells (MPCs) are studied for their potential in regenerative medicine. MSCs in particular have great potential, because various reports have shown that they can differentiate into many different cell types. However, the difference between mesenchymal stem/progenitor cells and so-called fibroblasts is unclear. In this study, we found that most of the distinct populations of primary fibroblast-like cells derived from various human tissues, including lung, skin, umbilical cord, and amniotic membrane, contained cells that were able to differentiate into at least one mesenchymal lineage, including osteoblasts, chondrocytes, and adipocytes. We therefore propose that primary fibroblast-like cell populations obtained from various human tissues do not comprise solely fibroblasts, but rather that they also include at least MPCs and possibly MSCs, to some extent. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Condrócitos/citologia , Fibroblastos/citologia , Células-Tronco Mesenquimais/citologia , Osteócitos/citologia , Antígenos de Superfície/metabolismo , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Humanos , Cariotipagem , Fatores de Tempo
18.
Exp Gerontol ; 40(4): 286-94, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15820609

RESUMO

Werner syndrome (WS) is characterized by the early onset of senescent phenotypes including premature atherosclerotic cardiovascular diseases, although the underlying molecular mechanism for atherosclerosis has not been fully understood yet. Cholesterol efflux from the cells is the initial step of reverse cholesterol transport, a major protective system against atherosclerosis. The aim of the present study was to determine whether this crucial step may be altered in WS. We examined intracellular lipid transport and cholesterol efflux and the expression levels of its related molecules in skin fibroblasts obtained from patients with WS. Cholesterol efflux was markedly reduced in the WS fibroblasts in association with increased cellular cholesterol. Fluorescent recovery after photobleaching (FRAP) technique revealed that intracellular lipid transport around Golgi apparatus was markedly reduced when using a C6-NBD-Ceramide as a tracer. Cdc42 protein and its GTP-bound form were markedly reduced in the WS fibroblasts. The complementation of wild-type Cdc42 corrected cholesterol efflux, intracellular lipid transport, and cellular cholesterol levels in the WS fibroblasts. These data indicated that the reduced expression of Cdc42 may be responsible for the abnormal lipid transport, which in turn might be related to the cardiovascular manifestations in WS.


Assuntos
Colesterol/metabolismo , Fibroblastos/metabolismo , Síndrome de Werner/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Adenoviridae/genética , Adulto , Arteriosclerose/metabolismo , Transporte Biológico , Linhagem Celular , Feminino , Vetores Genéticos , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/fisiologia
19.
Int J Oncol ; 26(2): 449-56, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15645130

RESUMO

Bile duct carcinoma patients generally have a poor prognosis. Understanding this cancer at the biological, genetic, molecular, and cellular level in ways relevant to clinical management is essential for developing effective preventive and therapeutic regimens. However, the currently established bile duct cancer cell lines are still insufficient for the research required to attain such an improved understanding. The aim of this study was to establish and characterize human bile duct cancer cell lines. We examined the growth characteristics and colony-forming ability of the established cell lines in terms of their cell cycle parameters and expression of tumor markers (CEA, CA19-9, MUC-1 and c-kit) and oncogene (c-erbB2) by flow cytometry. Comparative genomic hybridization (CGH) was performed to detect changes in the gene copy numbers. Human origin of the cell lines was confirmed by chromosomal analysis. We have established 3 cell lines and designated them as TGBC-47, TGBC-51, and TBCN-6 and the population doubling times of the three cell lines were 28, 38 and 94 h, respectively. The cells maintained differentiation characteristics of the original tumors. Two cell lines formed colonies in the colony forming assays; all three-cell lines expressed CEA, CA19-9, MUC-1 and c-erbB2 and showed chromosomal aneuploidy. CGH analysis demonstrated gains in various chromosomal regions, including 1q, 5p, 6p, 7q and 8q in two cell lines, and the loss in 17p in three cell lines. These newly established cell lines might serve as useful models for studying the advanced molecular tumor biology of bile duct cancer. Furthermore, they may assist translational research in the development of new effective molecular targeting chemoradiotherapy regimens. These chromosomal aberrations and imbalances provide some starting points for the molecular analysis of genomic regions and genes involved in bile duct carcinogenesis.


Assuntos
Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Antígeno CA-19-9/biossíntese , Antígeno Carcinoembrionário/biossíntese , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular , Cromossomos/ultraestrutura , Citometria de Fluxo , Humanos , Cariotipagem , Microscopia Eletrônica , Microscopia de Contraste de Fase , Mucina-1/biossíntese , Hibridização de Ácido Nucleico , Prognóstico , Radioimunoensaio , Receptor ErbB-2/biossíntese , Fatores de Tempo
20.
Hum Cell ; 17(1): 43-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15369136

RESUMO

An anchorage-dependent Wilms' tumor cell line, HFWT, has been found to be extremely susceptible to human natural killer (NK) cells. Here we established a transfectant of HFWT with the green fluorescence protein (GFP) gene, designated GHINK-1 cells, to apply to the activated NK cytotoxicity assay without radioisotope labeling. After being co-cultured with CD3 CD56+ NK cells, GHINK-1 cells released GFP into the medium. The intensity of the fluorescence from the released GFP correlated almost exactly with the radioactivity of a standard 51Cr-release assay performed with suspension-cultured K562 cells. Because it does not require separation of the remaining live target cells by centrifugation, the non-radioisotopic GFP release assay with GHINK-1 cells is a convenient alternative for monitoring human activated NK killing activity.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Proteínas Luminescentes/genética , Transfecção , Tumor de Wilms/imunologia , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde , Humanos , Células Matadoras Ativadas por Linfocina/imunologia , Proteínas Luminescentes/metabolismo , Tumor de Wilms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA