Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(20): 10942-10955, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31586407

RESUMO

The complex between Trm7 and Trm734 (Trm7-Trm734) from Saccharomyces cerevisiae catalyzes 2'-O-methylation at position 34 in tRNA. We report biochemical and structural studies of the Trm7-Trm734 complex. Purified recombinant Trm7-Trm734 preferentially methylates tRNAPhe transcript variants possessing two of three factors (Cm32, m1G37 and pyrimidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7-Trm734. We have solved the crystal structures of the apo and S-adenosyl-L-methionine bound forms of Trm7-Trm734. Small angle X-ray scattering reveals that Trm7-Trm734 exists as a hetero-dimer in solution. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 ß-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks to Trm7. The C-terminal region of Trm7 is required for binding to Trm734. The D-arm of substrate tRNA is required for methylation by Trm7-Trm734. If the D-arm in tRNAPhe is docked onto the positively charged area of BPB in Trm734, the anticodon-loop is located near the catalytic pocket of Trm7. This model suggests that Trm734 is required for correct positioning of tRNA for methylation. Additionally, a point-mutation in Trm7, which is observed in FTSJ1 (human Trm7 ortholog) of nosyndromic X-linked intellectual disability patients, decreases the methylation activity.


Assuntos
RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Transporte Vesicular/química , tRNA Metiltransferases/química , Domínio Catalítico , Ligação de Hidrogênio , Metilação , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Pirimidinas/metabolismo , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Proteínas de Transporte Vesicular/metabolismo , tRNA Metiltransferases/metabolismo
2.
Cell Rep ; 20(11): 2626-2638, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28903043

RESUMO

Microtubules (MTs) are dynamic structures that are fundamental for cell morphogenesis and motility. MT-associated motors work efficiently to perform their functions. Unlike other motile kinesins, KIF2 catalytically depolymerizes MTs from the peeled protofilament end during ATP hydrolysis. However, the detailed mechanism by which KIF2 drives processive MT depolymerization remains unknown. To elucidate the catalytic mechanism, the transitional KIF2-tubulin complex during MT depolymerization was analyzed through multiple methods, including atomic force microscopy, size-exclusion chromatography, multi-angle light scattering, small-angle X-ray scattering, analytical ultracentrifugation, and mass spectrometry. The analyses outlined the conformation in which one KIF2core domain binds tightly to two tubulin dimers in the middle pre-hydrolysis state during ATP hydrolysis, a process critical for catalytic MT depolymerization. The X-ray crystallographic structure of the KIF2core domain displays the activated conformation that sustains the large KIF2-tubulin 1:2 complex.


Assuntos
Biocatálise , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Polimerização , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Hidrólise , Cinesinas/genética , Mutação com Perda de Função , Modelos Moleculares , Peso Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Protein Expr Purif ; 133: 50-56, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28259734

RESUMO

In vitro transcription systems have been utilized to elucidate detailed mechanisms of transcription. Purified RNA polymerase II (pol II) and general transcription factors (GTFs) are required for the in vitro reconstitution of eukaryotic transcription systems. Among GTFs, TFIID and TFIIA play critical roles in the early stage of transcription initiation; TFIID first binds to the DNA in transcription initiation and TFIIA regulates TFIID's DNA binding activity. Despite the important roles of TFIIA, the time-consuming steps required to purify it, such as denaturing and refolding, have hampered the preparation of in vitro transcription systems. Here, we report an improved method for soluble expression and rapid purification of yeast TFIIA. The subunits of TFIIA, TOA1 and TOA2, were bacterially expressed as fusion proteins in soluble form, then processed by the PreScission protease and co-purified. TFIIA's heterodimer formation was confirmed by size exclusion chromatography-multiangle light scattering (SEC-MALS). The hydrodynamic radius (Rh) and radius of gyration (Rg) were measured by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), respectively. The Rg/Rh value implied that the intrinsically disordered region of TOA1 might not have an extended structure in solution. Our improved method provides highly purified TFIIA of sufficient quality for biochemical, biophysical, and structural analyses of eukaryotic transcription systems.


Assuntos
Escherichia coli/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIA , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Fator de Transcrição TFIIA/biossíntese , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/genética
4.
Nature ; 493(7434): 703-7, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23334411

RESUMO

In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.


Assuntos
Enterococcus/enzimologia , Modelos Moleculares , ATPases Vacuolares Próton-Translocadoras/química , Sítios de Ligação , Cristalização , Enterococcus/genética , Mutação , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Rotação , ATPases Vacuolares Próton-Translocadoras/genética
5.
J Mol Graph Model ; 37: 59-66, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22622011

RESUMO

Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble catalytic domain (V1; NtpA3-B3-D-G) and an integral membrane domain (V0; NtpI-K10) connected by a central and two peripheral stalks (NtpC, NtpD-G and NtpE-F). Recently nucleotide binding of catalytic NtpA monomer has been reported (Arai et al.). In the present study, we calculated the nucleotide binding affinity of NtpA by molecular dynamics (MD) simulation/free energy calculation using MM-GBSA approach based on homology modeled structure of NtpA monomer docked with ATP analogue, adenosine 5'-[ß, γ-imido] triphosphate (AMP-PNP). The calculated binding free energies showed qualitatively good agreement with experimental data. The calculation was cross-validated further by the rigorous method, thermodynamic integration (TI) simulation. Finally, the interaction between NtpA and nucleotides at the atomic level was investigated by the analyses of components of free energy and the optimized model structures obtained from MD simulations, suggesting that electrostatic contribution is responsible for the difference in nucleotide binding to NtpA monomer. This is the first observation and suggestion to explain the difference of nucleotide binding properties in V-ATPase NtpA subunit, and our method can be a valuable primary step to predict nucleotide binding affinity to other subunits (NtpAB, NtpA3B3) and to explore subunit interactions and eventually may help to understand energy transduction mechanism of E. hirae V-ATPase.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Simulação de Dinâmica Molecular , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Enterococcus/enzimologia , Dados de Sequência Molecular , Análise de Sequência de Proteína , Termodinâmica
6.
Biochem Biophys Res Commun ; 390(3): 698-702, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19833097

RESUMO

Enterococcus hirae vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain (V(1); NtpA(3)-B(3)-D-G) and an integral membrane domain (V(0); NtpI-K(10)) connected by a central and peripheral stalk(s) (NtpC and NtpE-F). Here we examined the nucleotide binding of NtpA monomer, NtpB monomer or NtpD-G heterodimer purified by using Escherichia coli expression system in vivo or in vitro, and the reconstitution of the V(1) portion with these polypeptides. The affinity of nucleotide binding to NtpA was 6.6 microM for ADP or 3.1 microM for ATP, while NtpB or NtpD-G did not show any binding. The NtpA and NtpB monomers assembled into NtpA(3)-B(3) heterohexamer in nucleotide binding-dependent manner. NtpD-G bound NtpA(3)-B(3) forming V(1) (NtpA(3)-B(3)-D-G) complex independent of nucleotides. The V(1) formation from individual NtpA and NtpB monomers with NtpD-G heterodimer was absolutely dependent on nucleotides. The ATPase activity of reconstituted V(1) complex was as high as that of native V(1)-ATPase purified from the V(0)V(1) complex by EDTA treatment of cell membrane. This in vitro reconstitution system of E. hirae V(1) complex will be valuable for characterizing the subunit-subunit interactions and assembly mechanism of the V(1)-ATPase complex.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Nucleotídeos/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Escherichia coli/química , Escherichia coli/metabolismo , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA