Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 28(3): 517-527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190726

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a therapy used for multiple malignant and nonmalignant diseases, with chemotherapy used for pretransplantation myeloablation. The post-HSCT brain contains peripheral engrafted parenchymal macrophages, despite their absence in the normal brain, with the engraftment mechanism still undefined. Here we show that HSCT chemotherapy broadly disrupts mouse brain regenerative populations, including a permanent loss of adult neurogenesis. Microglial density was halved, causing microglial process expansion, coinciding with indicators of broad senescence. Although microglia expressed cell proliferation markers, they underwent cell cycle arrest in S phase with a majority expressing the senescence and antiapoptotic marker p21. In vivo single-cell tracking of microglia after recovery from chemical depletion showed loss of their regenerative capacity, subsequently replaced with donor macrophages. We propose that HSCT chemotherapy causes microglial senescence with a gradual decrease to a critical microglial density, providing a permissive niche for peripheral macrophage engraftment of the brain.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microglia , Animais , Encéfalo , Macrófagos , Camundongos , Condicionamento Pré-Transplante
2.
Nat Med ; 23(3): 347-354, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112735

RESUMO

The prefrontal cortex (PFC) underlies higher cognitive processes that are modulated by nicotinic acetylcholine receptor (nAChR) activation by cholinergic inputs. PFC spontaneous default activity is altered in neuropsychiatric disorders, including schizophrenia-a disorder that can be accompanied by heavy smoking. Recently, genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) in the human CHRNA5 gene, encoding the α5 nAChR subunit, that increase the risks for both smoking and schizophrenia. Mice with altered nAChR gene function exhibit PFC-dependent behavioral deficits, but it is unknown how the corresponding human polymorphisms alter the cellular and circuit mechanisms underlying behavior. Here we show that mice expressing a human α5 SNP exhibit neurocognitive behavioral deficits in social interaction and sensorimotor gating tasks. Two-photon calcium imaging in awake mouse models showed that nicotine can differentially influence PFC pyramidal cell activity by nAChR modulation of layer II/III hierarchical inhibitory circuits. In α5-SNP-expressing and α5-knockout mice, lower activity of vasoactive intestinal polypeptide (VIP) interneurons resulted in an increased somatostatin (SOM) interneuron inhibitory drive over layer II/III pyramidal neurons. The decreased activity observed in α5-SNP-expressing mice resembles the hypofrontality observed in patients with psychiatric disorders, including schizophrenia and addiction. Chronic nicotine administration reversed this hypofrontality, suggesting that administration of nicotine may represent a therapeutic strategy for the treatment of schizophrenia, and a physiological basis for the tendency of patients with schizophrenia to self-medicate by smoking.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Comportamento Social , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Imunofluorescência , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/fisiopatologia , Inibição Pré-Pulso/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Receptores Nicotínicos/genética , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/genética , Tabagismo/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
3.
Proc Natl Acad Sci U S A ; 111(34): 12486-91, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114222

RESUMO

Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring ("non-Warburg") cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic "non-Warburg" cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity.


Assuntos
Ciclo Celular/fisiologia , Hipóxia Celular/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Ciclo Celular/genética , Hipóxia Celular/genética , Respiração Celular , Expressão Gênica , Genes Mitocondriais , Genes Reporter , Células HEK293 , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Nus , Modelos Biológicos , Transplante de Neoplasias , Neoplasias/genética , Oncogenes , Consumo de Oxigênio
4.
Sci Transl Med ; 4(149): 149ra119, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22932224

RESUMO

Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114 nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm and that more than one-quarter of all pores are ≥ 100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible.


Assuntos
Encéfalo/metabolismo , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Nanopartículas , Paclitaxel/metabolismo , Polietilenoglicóis/química , Poliestirenos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Química Farmacêutica , Difusão , Feminino , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Vídeo , Nanotecnologia , Paclitaxel/química , Tamanho da Partícula , Permeabilidade , Poliestirenos/administração & dosagem , Poliestirenos/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Fatores de Tempo
5.
Expert Opin Biol Ther ; 6(9): 879-90, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16918255

RESUMO

In the adult mammalian brain, new neurons are continuously generated from a proliferating population of neural progenitor/stem cells and become incorporated into the existing neuronal circuitry via a process termed adult neurogenesis. The existence of active functional adult neurogenesis raises the exciting possibility that manipulating endogenous neural progenitors, or transplanting the progeny of exogenously expanded neural progenitors, may lead to successful cell replacement therapies for various degenerative neurological diseases. Significant effort is being made to decipher the mechanisms regulating adult neurogenesis, which may allow us to translate this endogenous neuronal replacement system into therapeutic interventions for neurodegenerative diseases. This review focuses on adult neurogenesis as a strategy to derive potential therapies, and discusses future directions in the field.


Assuntos
Encéfalo/fisiopatologia , Transplante de Células-Tronco Mesenquimais , Regeneração Nervosa , Doenças Neurodegenerativas/terapia , Animais , Encéfalo/citologia , Diferenciação Celular , Proliferação de Células , Humanos , Doenças Neurodegenerativas/fisiopatologia , Neurologia/tendências , Neurônios/citologia , Neurônios/transplante , Medicina Regenerativa/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA