Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 82(1): 153-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198024

RESUMO

Colorectal cancer (CRC) is the most common cancer in both men and women and is associated with increased telomerase levels and activity. The potential downstream effects of TERT and/or TERC downregulation by berberine (a telomerase inhibitor) or RNA interference (RNAi) on various target RNAs, proteins, relative telomerase activity (RTA), relative telomere length (RTL), hydrogen peroxide concentration [H2O2], percentage of cell cycle distribution, cell size and granularity as well as cellular metabolites were explored in HCT 116 cell line. Knockdown of TERT decreased TERC. The downregulation of TERT and/or TERC caused increment of [H2O2], G0/G1 phase arrest in addition to decreased S and G2/M phases, as well as diminished cell size. RTL was later reduced as a result of TERT, TERT and/or TERC downregulation which decreased RTA. It was discovered that xanthine oxidase (XO) was significantly and positively correlated at FDR-adjusted p value < 0.05 with RTA, TERT, TERT, TERC, and RTL. HCT 116 with decreased RTA was closely clustered in the Principal Component Analysis (PCA) indicating similarity of the metabolic profile. A total of 55 metabolites were putatively annotated in this study, potentially associated with RTA levels. The Debiased Sparse Partial Correlation (DSPC) Network revealed that RTA was directly correlated to TERT. There were 4 metabolic pathways significantly affected by low level of RTA which include (1) purine metabolism, (2) glycine, serine, and threonine metabolism, (3) glyoxylate and dicarboxylate metabolism, and (4) aminoacyl-tRNA biosynthesis. The Gene-Metabolite Interaction Network implied that reduced RTA level was related to the mechanism of oxidative stress. This study reveals the linkages between RTA to various selected RNAs, proteins, metabolites, oxidative stress mechanism and subsequently phenotypic changes in HCT 116 which is valuable to understand the intricate biological interactions and mechanism of telomerase in CRC.


Assuntos
Berberina , Neoplasias Colorretais , Telomerase , Masculino , Humanos , Feminino , Telomerase/genética , Telomerase/metabolismo , Interferência de RNA , Berberina/farmacologia , Peróxido de Hidrogênio , RNA/genética , RNA/metabolismo , Células HCT116 , Neoplasias Colorretais/genética , Telômero/metabolismo
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(1): 41-60, ene. 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1552796

RESUMO

Hystrix brach yura bezoar is calcified undigested material found in the gastrointestinal tract known for various medicinal benefits including as an anticancer agent. However, the H. brachyura population has been declining due to its demand and is under Malaysian law pro tection. Therefore, present study aimed to identify bezoar anticancer active compounds through metabolomics and in - silico approaches. Five replicates of bezoar powder were subjected to extraction using different solvent ratios of methanol - water (100, 75, 5 0, 25, 0% v/v). Cytotoxicity and metabolite profiling using liquid chromatography - mass spectrometry were conducted. Putative compounds identified were subjected to in - silico analysis with targeted anticancer proteins namely, Bcl - 2, Cyclin B/CDK1 complex, V EGF and NM23 - H1. The correlation of LC - MS and cytotoxicity profile pinpointed two compounds, mangiferin and propafenone. In - silico study showed both compounds exerted good binding scores to all proteins with hydrophobic interaction dominating the ligand - pr otein complex binding, suggesting the ligands act as hydrophobes in the interactions.


El bezpar de Hystrix branchyura es material calcificado sin digerir encontr ados en el tracto gastrointestinal, conocido por sus variados beneficios médicos, incluyendo propiedades anticancerosas. De todas formas, la población de H. Branchyura ha ido declinando debido a su demanda y está bajo la protección de la ley de Malasia. Po r esto, este estudio busca identificar los componentes activos anticancerosos del bezoar mediante abordajes metabolómico e in silico. Cinco réplicas de polvo de bezoar fueron sometidos a extracción usando solventes con diferentes proporciones metanol - agua (100, 75, 50, 25, 0% v/v). Se hicieron perfiles de citotoxicidad y de metabolitos usando cromatografía líquida - espectrometría de masa ( LC - MS ). Se identificaron compuestos putativos yse sometieron a a nálisis in silico, buscando las proteínas anticancerosas B cl - 2, complejo Cyclin B/CDK1, VEGF, y NM23 - H1. La correlación LC - MS y el perfil de citotoxicidad identificaron dos compuestos: mangiferina y propafenona. El estudio in silico mostró que ambos compuestos tenían buenos índices de enlace con todas las proteín as con interacción hidrofóbica dominando el enlace complejo proteína - ligando, sugeriendo que los ligandos actúan como hidrófobos en las interacciones


Assuntos
Bezoares/metabolismo , Braquiúros/química , Antineoplásicos Fitogênicos/química , Análise Multivariada , Metabolômica , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Espectrometria de Massa com Cromatografia Líquida
3.
Bio Protoc ; 13(14): e4719, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37497445

RESUMO

The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua-derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its production and commercialization is its low accumulation in the native plant. Moreover, the chemical synthesis of artemisinin is difficult and expensive due to its complex structure. Hence, an alternative and sustainable production system of artemisinin in a heterologous host is required. Previously, heterologous production of artemisinin was achieved by Agrobacterium-mediated transformation. However, this requires extensive bioengineering of modified Nicotiana plants. Recently, a technique involving direct in vivo assembly of multiple DNA fragments in the moss, P. patens, has been successfully established. We utilized this technique to engineer artemisinin biosynthetic pathway genes into the moss, and artemisinin was obtained without further modifications with high initial production. Here, we provide protocols for establishing moss culture accumulating artemisinin, including culture preparation, transformation method, and compound detection via HS-SPME, UPLC-MRM-MS, and LC-QTOF-MS. The bioengineering of moss opens up a more sustainable, cost effective, and scalable platform not only in artemisinin production but also other high-value specialized metabolites in the future.

4.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450878

RESUMO

Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.


Assuntos
Antineoplásicos/farmacologia , Berberina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Telomerase/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Berberina/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Telomerase/metabolismo , Telômero/efeitos dos fármacos , Telômero/metabolismo , Células Tumorais Cultivadas
5.
Methods Mol Biol ; 1815: 437-455, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981141

RESUMO

The plant Catharanthus roseus is a rich source of terpenoid indole alkaloids (TIA). Some of the TIA are important as antihypertensive (ajmalicine) and anticancer (vinblastine and vincristine) drugs. However, production of the latter is very low in the plant. Therefore, in vitro plant cell cultures have been considered as a potential supply of these chemicals or their precursors. Some monomeric alkaloids can be produced by plant cell cultures, but not on a level feasible for commercialization, despite extensive studies on this plant that deepened the understanding of the TIA biosynthesis and its regulation. In order to analyze the metabolites in C. roseus cell cultures, this chapter presents the method of TIA, carotenoids, and phytosterols analyses. Furthermore, an NMR-based metabolomics approach to study C. roseus cell culture is described.


Assuntos
Carotenoides/análise , Catharanthus/metabolismo , Técnicas de Cultura de Células/métodos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Fitosteróis/análise , Células Vegetais/metabolismo , Alcaloides de Triptamina e Secologanina/análise , Cromatografia Líquida de Alta Pressão , Padrões de Referência , Espectrofotometria Ultravioleta , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA