Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 112086-112103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824055

RESUMO

The unregulated expulsion of untreated textile water into water bodies is a major hazard to aquatic ecosystems. The present investigation was contrived to estimate the impact of textile dye bath effluent (untreated and microbially treated) on fish Channa punctata. Untreated effluent-exposed fish showed extremely altered behaviour (air gulping, erratic and speedy movements, increased opercular activity) and morphology (deposition of dyes on skin and scales, high pigmentation, mucus exudation). Significantly increased micronuclei (1.61-, 1.28-, 1.38-fold) and aberrant cell frequency (1.37-, 1.45-, 1.28-fold) was observed in untreated group as compared to treated group after 15, 30, and 45 days of exposure. Tail length, % tail intensity, tail moment and olive tail moment were also enhanced in all the exposed tissues. However, maximum damage was noticed in gill tissues showing 1.19-, 1.37-, 1.34- and 1.50-fold increased TL, %TI, TM and OTM in untreated group as compared to treated group after 45 days of exposure. On comparing untreated and treated groups, increased blood parameters and significantly reduced white blood cell count (WBC) were noticed in treated group. Significantly enhanced alterations in biochemical parameters were also analysed in untreated group. Reduced alterations in enzymological levels of fishes exposed to treated effluent indicate lesser toxic nature of the degraded metabolites of dye. Histological analysis in fishes exposed to untreated effluent showed several deformities in liver (necrosis, congestion, fusion of cells and melanomacrophage infiltration) and gill tissues (necrosis, bending of lamellae and severe aneurysm). Scanning electron microscopy (SEM) analysis further reaffirmed the pathologies observed in histological analysis. Fewer structural alterations were noticed in treated effluent fishes. The results concluded that untreated effluent inflicted toxicity potential on morphology as well as physiological defects in fish, and the severity increased with increasing duration of exposure, whereas reduction in toxicity in microbially treated groups can be analysed for aquacultural purposes owing to their lesser toxic nature.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Indústria Têxtil , Ecossistema , Peixes/metabolismo , Necrose , Dano ao DNA , Água Doce , Água/metabolismo
2.
Sci Rep ; 13(1): 14648, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669993

RESUMO

The imprudent use of insecticides causes the development of resistance in insect pest populations, contamination of the environment, biological imbalance and human intoxication. The use of microbial pathogens combined with insecticides has been proposed as an alternative strategy for insect pest management. This IPM approach may offer effective ways to control pests, in addition to lowering the risk of chemical residues in the environment. Spodoptera litura (Fabricius) is a major pest of many crops like cotton, maize, tobacco, cauliflower, cabbage, and fodder crops globally. Here, we evaluated the combined effects of new chemistry insecticides (chlorantraniliprole and emamectin benzoate) and entomopathogenic bacterial strains, Shewanella sp. (SS4), Thauera sp. (M9) and Pseudomonas sp. (EN4) against S. litura larvae inducing additive and synergistic interactions under laboratory conditions. Both insecticides produced higher larval mortality when applied in combination with bacterial isolates having maximum mortality of 98 and 96% with LC50 of chlorantraniliprole and emamectin benzoate in combination with LC50 of Pseudomonas sp. (EN4) respectively. The lower concentration (LC20) of both insecticides also induced synergism when combined with the above bacterial isolates providing a valuable approach for the management of insect pests. The genotoxic effect of both the insecticides was also evaluated by conducting comet assays. The insecticide treatments induced significant DNA damage in larval hemocytes that further increased in combination treatments. Our results indicated that combined treatments could be a successful approach for managing S. litura while reducing the inappropriate overuse of insecticides.


Assuntos
Inseticidas , Humanos , Animais , Spodoptera , Thauera
3.
BMC Microbiol ; 23(1): 95, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013477

RESUMO

BACKGROUND: Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) also known as tobacco caterpillar, is one of the most serious polyphagous pests that cause economic losses to a variety of commercially important agricultural crops. Over the past few years, many conventional insecticides have been used to control this pest. However, the indiscriminate use of these chemicals has led to development of insecticide resistant populations of S. litura in addition to harmful effects on environment. Due to these ill effects, the emphasis is being laid on alternative eco-friendly control measures. Microbial control is one of the important components of integrated pest management. Thus, in search for novel biocontrol agents, the current work was carried out with the aim to evaluate the insecticidal potential of soil bacteria against S. litura. RESULTS: Among the tested soil bacterial isolates (EN1, EN2, AA5, EN4 and R1), maximum mortality (74%) was exhibited by Pseudomonas sp. (EN4). The larval mortality rate increased in a dose-dependent manner. Bacterial infection also significantly delayed the larval development, reduced adult emergence, and induced morphological deformities in adults of S. litura. Adverse effects were also detected on various nutritional parameters. The infected larvae showed a significant decrease in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food to biomass. Histopathological studies indicated damage to the midgut epithelial layer of larvae due to the consumption of bacteria treated diet. The infected larvae also showed a significantly decreased level of various digestive enzymes. Furthermore, exposure to Pseudomonas sp. also caused DNA damage in the hemocytes of S. litura larvae. CONCLUSION: Adverse effects of Pseudomonas sp. EN4 on various biological parameters of S. litura indicate that this soil bacterial strain may be used as an effective biocontrol agent against insect pests.


Assuntos
Inseticidas , Mariposas , Animais , Spodoptera , Pseudomonas , Larva , Inseticidas/farmacologia , Inseticidas/metabolismo , Bactérias
4.
Sci Rep ; 12(1): 8257, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585189

RESUMO

The symbiotic relationship between insects and gut microbes contributes to their fitness by serving immense range of functions viz. nutrition and digestion, detoxification, communication and reproduction etc. However, this relationship between insect and gut microbes varies from mutualistic to pathogenic. Gut microbes become pathogenic when the healthy normal microbial composition is perturbed leading to the death of insect host. Spodoptera litura (Fab.) is a polyphagous pest that causes significant damage to many agricultural crops. The management of this pest primarily depends upon chemical insecticides which have resulted in development of resistance. Thus in search for alternative strategies, culturable gut bacteria isolated from S. litura were screened for insecticidal potential. Among these Serratia marcescens and Enterococcus mundtii induced higher larval mortality in S. litura. The mortality rate increased from 32 to 58% due to S. marcescens at concentrations ranging from 2.6 × 108 to 5.2 × 109 cfu/ml and 26 to 52% in case of E. mundtii due to increase in concentration from 4.6 × 108 to 6.1 × 109 cfu/ml. Both the bacteria negatively affected the development, nutritional physiology and reproductive potential of insect. The results indicated a change in gut microbial composition as well as damage to the gut epithelial membrane. Invasion of gut bacteria into the haemocoel led to septicaemia and ultimately death of host insect. In conclusion both these gut bacteria may serve as potential biocontrol agents against S. litura.


Assuntos
Inseticidas , Nicotiana , Animais , Inseticidas/farmacologia , Larva , Serratia marcescens , Spodoptera/fisiologia , Virulência
5.
BMC Microbiol ; 22(1): 71, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272633

RESUMO

BACKGROUND: Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) commonly known as tobacco caterpillar is a polyphagous pest that causes significant damage to many agricultural crops. The extensive use of chemical insecticides against S. litura has resulted in development of resistance. In order to find potential biocontrol agents, gut microbes were investigated for insecticidal potential. These microbes live in a diverse relationship with insects that may vary from beneficial to pathogenic. RESULTS: Enterococcus casseliflavus, Enterococcus mundtii, Serratia marcescens, Klebsiella pneumoniae, Pseudomonas paralactis and Pantoea brenneri were isolated from adults of S. litura. Screening of these microbial isolates for insecticidal potential against S. litura showed higher larval mortality due to K. pneumoniae and P. paralactis. These bacteria also negatively affected the development of insect along with significant decline in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food of insect. The bacteria significantly decreased the reproductive potential of insect. Perturbations in the composition of gut microbiome and damage to gut epithelium were also observed that might be associated with decreased survival of this insect. CONCLUSIONS: Our study reveals the toxic effects of K. pneumoniae and P. paralactis on biology of S. litura. These bacteria may be used as potential candidates for developing ecofriendly strategies to manage this insect pest.


Assuntos
Microbioma Gastrointestinal , Inseticidas , Mariposas , Animais , Bactérias , Inseticidas/farmacologia , Larva , Spodoptera
6.
J Invertebr Pathol ; 127: 38-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725116

RESUMO

Gut microbes contribute to the health of insects and perturbations in the composition or location of gut microbiota can lead to pathological states and host mortality. We explored the culturable bacterial community in the gut of Spodoptera litura (Fab.) larvae, which is a polyphagous pest. Bacterial isolates were identified as Microbacterium arborescens (SL6), Enterococcus casseliflavus (SL10) and Enterobacter cloacae (SL11) by using culture dependent technique based on 16S rRNA gene sequencing. Screening of these three isolates for insecticidal potential against the same host i.e. S. litura indicated the highest larval mortality in E. cloacae (73.33%). Further, we assessed the effect of E. cloacae (SL11) infection on growth and development of S. litura. A significant effect of E. cloacae was observed on various biological parameters viz. larval and pupal period, total development period and reproductive potential of S. litura. E. cloacae significantly influenced the immune response of S. litura. A marked decrease in total hemocyte count was observed in larvae infected with E. cloacae whereas lysozyme and phenoloxidase activity increased initially followed by a decline. The gut microbial diversity in larvae infected with E. cloacae differed from control larvae. The population of E. cloacae in the gut of infected larvae exceeded over the other two microbes and resulted in pathogenicity and death of S. litura larvae. This indicates that E. cloacae can have the potential to be used as a promising biological control agent.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Controle Biológico de Vetores/métodos , Spodoptera/microbiologia , Animais , Bactérias , Enterobacter cloacae , RNA Ribossômico 16S/genética
7.
J Basic Microbiol ; 52(4): 383-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22052437

RESUMO

The incubation of whole Bacillus alcalophilus cells grown on a mineral supplemented medium (MSM) containing 1% (w/v) sucrose as carbon source, 1.2% (w/v) tryptone as nitrogen source at pH 6.5 and temperature 30 °C in 24 h kinetically resolved benzyl glycidyl ether (1 mg/ml) to provide (S)-benzyl glycidyl ether with 30% ee and (R)-3-benzyloxypropane-1,2-diol with 40% ee.


Assuntos
Bacillus/metabolismo , Biotecnologia/métodos , Compostos de Epóxi/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Peptonas/metabolismo , Sacarose/metabolismo , Temperatura
8.
J Hazard Mater ; 171(1-3): 1178-82, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19632037

RESUMO

The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal gamma-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, beta-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.


Assuntos
Biodegradação Ambiental , Hexaclorocicloexano/química , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Emulsificantes/química , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Temperatura Alta , Concentração de Íons de Hidrogênio , Micelas , Isoformas de Proteínas , Sais/química , Poluentes do Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA