Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 22(19): 8134-43, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16952253

RESUMO

A nanometer scale redox active biomolecular architecture has been successfully synthesized through an efficient chemoselective oxime based coupling between ferrocenyl groups and a regioselectively addressable cyclodecapeptide. This molecular tool exhibits electronic, structural, and chemical properties driven by the biomimetic recognition activity of the polypeptide skeleton associated to the well-defined electrochemical activity of metallocenyl probes. Biomolecular materials obtained by confinement of the redox cyclopeptide in self-assembled monolayers on gold surfaces shows efficient through-bond electron transfer from the ferrocenes to the electrode surface via the peptidic backbone, as well as markedly improved sensing properties toward anionic species in organic electrolyte, as compared to those observed in homogeneous solution.


Assuntos
Teste de Materiais , Oligopeptídeos/química , Peptídeos Cíclicos/química , Ciclização , Eletroquímica , Compostos Ferrosos/química , Metalocenos , Modelos Moleculares , Estrutura Molecular , Nanotecnologia , Oxirredução , Estereoisomerismo , Propriedades de Superfície
2.
Chemistry ; 12(23): 6138-50, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16832797

RESUMO

We report the structure, properties and a mechanism for the catecholase activity of a tetranuclear carbonato-bridged copper(II) cluster with the macrocyclic ligand [22]pr4pz (9,22-dipropyl-1,4,9,14,17,22,27,28,29, 30-decaazapentacyclo[22.2.1.1(4,7).1(11,14). 1(17,20)]triacontane-5,7(28),11(29),12,18, 20(30),24(27),25-octaene). In this complex, two copper ions within a macrocyclic unit are bridged by a carbonate anion, which further connects two macrocyclic units together. Magnetic susceptibility studies have shown the existence of a ferromagnetic interaction between the two copper ions within one macrocyclic ring, and a weak antiferromagnetic interaction between the two neighboring copper ions of two different macrocyclic units. The tetranuclear complex was found to be the major compound present in solution at high concentration levels, but its dissociation into two dinuclear units occurs upon dilution. The dinuclear complex catalyzes the oxidation of 3,5-di-tert-butylcatechol to the respective quinone in methanol by two different pathways, one proceeding via the formation of semiquinone species with the subsequent production of dihydrogen peroxide as a byproduct, and another proceeding via the two-electron reduction of the dicopper(II) center by the substrate, with two molecules of quinone and one molecule of water generated per one catalytic cycle. The occurrence of the first pathway was, however, found to cease shortly after the beginning of the catalytic reaction. The influence of hydrogen peroxide and di-tert-butyl-o-benzoquinone on the catalytic mechanism has been investigated. The crystal structures of the free ligand and the reduced dicopper(I) complex, as well as the electrochemical properties of both the Cu(II) and the Cu(I) complexes are also reported.


Assuntos
Catecol Oxidase/química , Cobre/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Compostos Organometálicos/química , Catálise , Cristalização , Cristalografia por Raios X , Eletroquímica , Ativação Enzimática , Ligantes , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Temperatura
3.
Chemistry ; 12(26): 6953-62, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16810650

RESUMO

The two tetradentate ligands H(2)L and H(2)L(Me) afford the slightly distorted square-planar low-spin Ni(II) complexes 1 and 2, which comprise two coordinated phenolate groups. Complex 1 has been electrochemically oxidized into 1(+), which contains a coordinated phenoxyl radical, with a contribution from the nickel orbital. In the presence of pyridine, 1(+) is converted into 1(Py) (+), an octahedral phenolate nickel(III) complex with two pyridines axially coordinated: An intramolecular electron transfer (valence tautomerism) is promoted by the geometrical changes, from square planar to octahedral, around the metal center. The tetradentate ligand H(2)L(Me), in the presence of pyridine, and the hexadentate ligand H(2)L(Py) in CH(2)Cl(2) afford, respectively, the octahedral high-spin Ni(II) complexes 2(Py) and 3, which involve two equatorial phenolates and two axially coordinated pyridines. At 100 K, the one-electron-oxidized product 2(Py) (+) comprises a phenoxyl radical ferromagnetically coupled to the high-spin Ni(II) ion, with large zero-field splitting parameters, while 3(+) involves a phenoxyl radical antiferromagnetically coupled to the high-spin Ni(II) ion.


Assuntos
Iminas/química , Níquel/química , Compostos Organometálicos/química , Fenóis/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Etilenodiaminas/química , Estrutura Molecular , Nitrogênio/química , Oxirredução
4.
Chemistry ; 12(8): 2293-302, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16370005

RESUMO

A large number of complexes of the first-row transition metals with non-innocent ligands has been characterized in the last few years. The localization of the oxidation site in such complexes can lead to discrepancies when electrons can be removed either from the metal center (leading to an M((n+1)+) closed-shell ligand) or from the ligand (leading to an M(n+) open-shell ligand). The influence of the ligand field on the oxidation site in square-planar nickel complexes of redox-active ligands is explored herein. The tetradentate ligands employed herein incorporate two di-tert-butylphenolate (pro-phenoxyl) moieties and one orthophenylenediamine spacer. The links between the spacer and both phenolates are either two imines ([Ni(L1)]), two amidates ([Ni(L3)]2-), or one amidate and one imine ([Ni(L2)]-). The structure of each nickel(II) complex is presented. In the noncoordinating solvent CH2Cl2, the one-electron-oxidized forms are ligand-radical species with a contribution from a singly occupied d orbital of the nickel. In the presence of an exogenous ligand, such as pyridine, a Ni(III) closed-shell ligand form is favored: axial ligation, which stabilizes the trivalent nickel in its octahedral geometry, induces an electron transfer from the metal(II) center to the radical ligand. The affinity of pyridine for the phenoxylnickel(II) species is correlated to the N-donor ability of the linkers.


Assuntos
Transporte de Elétrons , Radicais Livres/química , Ligantes , Níquel/química , Cristalografia por Raios X , Estrutura Molecular , Oxirredução
5.
Inorg Chem ; 41(15): 3983-9, 2002 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12132925

RESUMO

A series of dicopper(II) complexes have been investigated as model systems for the catechol oxidase active site enzyme, regarding the binding of catechol substrate in the first step of the catalytic cycle. The [Cu(2)(L(R))(mu-OH)](ClO(4))(2) and [Cu(2)(L(R))(H(2)O)(2)](ClO(4))(3) complexes are based on the L(R) ligands (2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-R-substituted phenol) with -R = -OCH(3), -CH(3), or -F. Binding studies of diphenol substrates were investigated using UV-vis and EPR spectroscopy, electrochemistry, and (19)F NMR (fluorinated derivatives). All the complexes are able to bind two ortho-diphenol substrates (tetrachlorocatechol and 3,5-di-tert-butylcatechol). Two successive fixation steps, respectively fast and slower, were evidenced for the mu-OH complexes (the bis(aqua) complexes are inactive in catalysis) by stopped-flow measurement and (19)F NMR. From the mu-OH species, the 1:1 complex/substrate adduct is the catalytically active form. In relation with the substrate specificity observed in the enzyme, different substrate/inhibitor combinations were also examined. These studies enabled us to propose that ortho-diphenol binds monodentately one copper(II) center with the concomitant cleavage of the OH bridge. This hydroxo ligand appears to be a key factor to achieve the complete deprotonation of the catechol, leading to a bridging catecholate.


Assuntos
Catecol Oxidase/química , Cobre/química , Compostos Organometálicos/síntese química , Sítios de Ligação , Catálise , Catecol Oxidase/metabolismo , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Organometálicos/química , Oxirredução , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA