RESUMO
Plate-based single-cell glycan and RNA sequencing (scGR-seq) is previously developed to realize the integrated analysis of glycome and transcriptome in single cells. However, the sample size is limited to only a few hundred cells. Here, a droplet-based scGR-seq is developed to address this issue by adopting a 10x Chromium platform to simultaneously profile ten thousand cells' glycome and transcriptome in single cells. To establish droplet-based scGR-seq, a comparative analysis of two distinct cell lines is performed: pancreatic ductal adenocarcinoma cells and normal pancreatic duct cells. Droplet-based scGR-seq revealed distinct glycan profiles between the two cell lines that showed a strong correlation with the results obtained by flow cytometry. Next, droplet-based scGR-seq is applied to a more complex sample: peripheral blood mononuclear cells (PBMC) containing various immune cells. The method can systematically map the glycan signature for each immune cell in PBMC as well as glycan alterations by cell lineage. Prediction of the association between the glycan expression and the gene expression using regression analysis ultimately leads to the identification of a glycan epitope that impacts cellular functions. In conclusion, the droplet-based scGR-seq realizes the high-throughput profiling of the distinct cellular glyco-states in single cells.
Assuntos
Polissacarídeos , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Polissacarídeos/química , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Leucócitos Mononucleares , Carcinoma Ductal Pancreático/genética , Transcriptoma , Glicômica/métodos , Citometria de FluxoRESUMO
BACKGROUND: Signet ring cell carcinoma (SRC) is a distinct subtype of gastric cancer (GC); however, the specific characteristics of cancer cell surface glycans and glycosylation remain unclear. In this study, we investigated SRC-specific glycans using lectin microarray and evaluated the potential applicability of a glycan-targeting therapy. METHODS: SRC cell lines (NUGC-4 and KATO-III) and non-SRC (NSRC) cell lines (NCI-N87, SNU-1, and MKN-45) were subjected to lectin microarray analysis to identify the SRC-specific glycans. Additionally, we performed immunohistochemical lectin staining and evaluated the anti-tumor effects of lectin drug conjugates (LDCs) using high-affinity lectins for SRC. RESULTS: Among the 96 lectins tested, 11 high-affinity and 8 low-affinity lectins were identified for SRC. Glycan-binding motifs varied in the high-affinity lectins, but 5 (62.5%) low-affinity lectins bound the same glycan structure, α2-6-linked sialic acids. The ratio of signal intensity in SRC to NSRC (SRC/NSRC) was highest in the rBC2LCN lectin (1.930-fold), followed by the BPL lectin (1.786-fold). rBC2LCN lectin showed high affinity for both SRC cell lines and one of the three NSRC cell lines (NCI-N87). The therapeutic effects of the LDC, rBC2LCN-PE38 (rBC2LCN, and Pseudomonas exotoxin A), showed cytocidal effects in vitro and tumor regression in in vivo mouse xenograft models. CONCLUSION: We reported specific glycan profiles in SRC cells, showing reduced α2-6-linked sialic acids. Additionally, we found a targeted therapy using rBC2LCN lectin might be applicable as an alternative treatment option for patients with SRC.
Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias Gástricas , Animais , Carcinoma de Células em Anel de Sinete/tratamento farmacológico , Carcinoma de Células em Anel de Sinete/patologia , Humanos , Lectinas/metabolismo , Lectinas/uso terapêutico , Camundongos , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Ácidos Siálicos , Neoplasias Gástricas/patologiaRESUMO
Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin, self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20, self-assembled into cyclized and extended chain-type nanostructures. This study developed novel functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin, Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin nano-block oligomers to glycans was significantly increased through multivalent effects compared with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various applications, such as specific cell labeling.
Assuntos
Lectinas/química , Nanoestruturas/química , Polissacarídeos/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Hemaglutinação , Humanos , Modelos Moleculares , Peptídeos/química , Espalhamento a Baixo Ângulo , Ressonância de Plasmônio de Superfície , Difração de Raios XRESUMO
Quality control for human induced pluripotent stem cells (hiPSCs) is important for efficient and stable production of hiPSC-derived cell therapy products to be used for transplantation. During cell culture, hiPSCs spontaneously undergo morphological changes and lose pluripotent properties. Such cells are termed deviated cells, which are altered from the undifferentiated state of hiPSCs, and express the early differentiation marker stage-specific embryonic antigen 1 (SSEA-1). In this study, we searched for soluble SSEA-1+ glycoproteins secreted from deviated cells generated by culturing hiPSCs in cell culture medium containing heat-inactivated supplements. Glycoproteins obtained from cell culture supernatants of SSEA-1+ deviated cells were enriched by an O-glycan binding lectin and blotted with anti-SSEA-1 antibody. A single protein band at >250 kDa specifically detected by anti-SSEA-1 antibody was identified as fibronectin (FN) by LC-MS/MS analysis and immunoprecipitation combined with western blotting, indicating that FN is a carrier protein of SSEA-1. We then constructed a sandwich enzyme-linked immunosorbent assay to detect SSEA-1+ FN secreted from deviated cells. This FN-SSEA-1 test proved to be both sensitive and specific, allowing for non-destructive detection of SSEA-1+ deviated cells within mixed cell population, with a lower limit of detection of 100 cells/mL. The developed assay may provide a standard technology for quality control of hiPSCs used for regenerative medicine.
Assuntos
Fibronectinas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos CD15/metabolismo , Western Blotting , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Cromatografia Líquida , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Medicina Regenerativa/métodos , Espectrometria de Massas em TandemRESUMO
Human pluripotent stem cells (hPSCs) are attractive resources for regenerative medicine, but medical applications are hindered by their tumorigenic potential. Previously, a hPSC-specific lectin probe, rBC2LCN, was identified through comprehensive glycome analysis by using high-density lectin microarrays. Herein, a lectin-doxorubicin (DOX) prodrug conjugate, with controllable photolysis activation for the elimination of tumorigenic human induced pluripotent stem cells, has been developed. rBC2LCN was fused with a biotin-binding protein, tamavidin (BC2Tama), and the fusion protein was expressed in Escherichia coli and purified by means of affinity chromatography. BC2Tama was then conjugated with doxorubicin-photocleavable biotin (DOXPCB). The BC2Tama-DOXPCB conjugates were observed to bind to hPSCs followed by internalization. Upon exposure to ultraviolet light, DOX was released inside the cells, which allowed specific killing of the hPSCs. Thus, BC2Tama-DOXPCB should be useful for the targeted elimination of hPSCs contained in hPSC-derived cell therapy products. This is the first report of the generation of lectin-prodrug conjugates. BC2Tama should be applicable for the targeted delivery of various types of biotinylated compounds into hPSCs.
Assuntos
Doxorrubicina/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Lectinas/farmacologia , Biotina/química , Carcinogênese/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Doxorrubicina/química , Escherichia coli/genética , Humanos , Lectinas/química , Pró-FármacosRESUMO
The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 µg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 µg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.
Assuntos
ADP Ribose Transferases/genética , Toxinas Bacterianas/genética , Exotoxinas/genética , Lectinas/genética , Células-Tronco Pluripotentes/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Virulência/genética , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Colágeno/química , Escherichia coli , Fibroblastos/citologia , Glicosaminoglicanos/química , Humanos , Exotoxina A de Pseudomonas aeruginosaRESUMO
Human somatic stem cells such as human mesenchymal stem cells (hMSCs) are considered attractive cell sources for stem cell-based therapy. However, quality control issues have been raised concerning their safety and efficacy. Here we used lectin microarray technology to identify cell surface glycans as markers of the differentiation potential of stem cells. We found that α2-6Sia-specific lectins show stronger binding to early passage adipose-derived hMSCs (with differentiation ability) than late passage cells (without the ability to differentiate). Flow cytometry analysis using α2-6Sia-specific lectins supported the results obtained by lectin microarray. Similar results were obtained for bone marrow-derived hMSCs and cartilage tissue-derived chondrocytes. Little or no binding of α2-6Sia-specific lectins was observed for human dermal fibroblasts, which are unable to differentiate, suggesting that the binding of α2-6Sia-specific lectins is associated with the differentiation ability of cells, but not to their capacity to proliferate. Quantitative analysis of the linkage mode of Sia using anion-exchange chromatography showed that the percentage of α2-6Sia linkage type was higher in early passage adipose-derived hMSCs than late passage cells. Integrinα5 was found to be a carrier protein of α2-6Sia. Sialidase treatment significantly reduced the differentiation efficiency of bone marrow-derived hMSCs. Based on these findings, we propose that α2-6sialylation is a marker of differentiation potential in stem cells such as adipose-derived hMSCs, bone marrow-derived hMSCs, and cartilage tissue-derived chondrocytes.
Assuntos
Células-Tronco Mesenquimais/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Lectinas/química , Análise Serial de ProteínasRESUMO
The application of stem-cell-based therapies in regenerative medicine is hindered by the tumorigenic potential of residual human pluripotent stem cells. Previously, we identified a human pluripotent stem-cell-specific lectin probe, called rBC2LCN, by comprehensive glycome analysis using high-density lectin microarrays. Here we developed a recombinant lectin-toxin fusion protein of rBC2LCN with a catalytic domain of Pseudomonas aeruginosa exotoxin A, termed rBC2LCN-PE23, which could be expressed as a soluble form from the cytoplasm of Escherichia coli and purified to homogeneity by one-step affinity chromatography. rBC2LCN-PE23 bound to human pluripotent stem cells, followed by its internalization, allowing intracellular delivery of a cargo of cytotoxic protein. The addition of rBC2LCN-PE23 to the culture medium was sufficient to completely eliminate human pluripotent stem cells. Thus, rBC2LCN-PE23 has the potential to contribute to the safety of stem-cell-based therapies.