Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12519, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869108

RESUMO

This study investigated the therapeutic effects of dry-preserved multi-layered fibroblast cell sheets (dry sheets) on cutaneous ulcers. Dry sheets were prepared by air-drying multi-layered fibroblast cell sheets (living sheets) to cease their life activities. Before in vivo application, we tested the release of growth factors into the medium to examine the mechanisms of dry sheets in wound healing. Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were released from both dry and living sheets, while high levels of fibroblast growth factor-2 (FGF-2) and high mobility group box 1 (HMGB1) protein were only from dry sheets. An in vitro fibroblast proliferation assay revealed that the dry sheet eluate significantly enhanced cell proliferation and VEGF and HGF production compared with living sheet eluate. FGF-2-neutralizing antibodies significantly blocked this proliferative response. In wounds created on diabetic mice, the dry sheet-treatment groups using autologous or allogeneic cells showed significantly accelerated wound closure compared with that in the no-treatment group. The storage stability of the dry sheet was better at refrigeration temperature than at room temperature and remained stable for at least 4 weeks. Our data indicated that allogeneic dry sheets represent a promising new tool for regenerative medicine that promotes wound healing.


Assuntos
Diabetes Mellitus Experimental , Medicina Regenerativa , Animais , Diabetes Mellitus Experimental/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
2.
Semin Thorac Cardiovasc Surg ; 34(1): 349-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33711463

RESUMO

Bronchopleural fistula is one of the most serious postoperative complications caused by the incomplete healing of a bronchial stump. Fibroblasts play an important role in wound healing by facilitating connective tissue formation and inducing angiogenesis. We developed a method for production of multilayered fibroblast sheets that secreted some growth factors and promoted wound healing. The present study aimed to assess the treatment effect of multilayered fibroblast sheets on bronchial stump healing. In this rat model, left pneumonectomy was performed, and multilayered fibroblast sheets derived from autologous oral mucosal tissues were transplanted to the bronchial stump. The changes in the bronchial stump were examined macroscopically, histologically, and mechanically. The fibroblast sheets promoted the formation of thick connective tissues around the bronchial stump. The formed connective tissues were accompanied by new blood vessels, and fibrosis was observed over time. Then, 7 days after the transplantation of the fibroblast sheets, the bronchial wall became significantly thicker, and the area of the blood vessels for the bronchial wall tissues was significantly larger in the experimental group than in the control group. In addition, the burst pressure in the bronchial stump was significantly higher in the experimental group than in the control group. Bronchial stumps were reinforced by the transplantation of multilayered fibroblast sheets derived from autologous oral mucosal tissues.


Assuntos
Fístula Brônquica , Animais , Brônquios/cirurgia , Fístula Brônquica/etiologia , Fibroblastos , Humanos , Pneumonectomia/efeitos adversos , Ratos , Resultado do Tratamento
3.
Am J Transl Res ; 13(3): 1257-1268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841654

RESUMO

INTRODUCTION: Postoperative pancreatic fistula (POPF) is a serious complication after gastrointestinal or pancreatic surgery. Despite intensive investigations, the occurrence has not significantly decreased in the past decades. The aims of this study were to clarify the pathophysiology of POPF and establish the preventive measures using multilayered fibroblast sheets. METHODS: We developed a pancreatic fistula (PF) model of rat with transection of the splenic duct and surrounding pancreatic parenchyma. Multilayered fibroblast sheets prepared from tails were autologously transplanted to this model. The preventive effect was biochemically and histologically evaluated by measuring the ascitic levels of pancreatic enzymes and conducting immunohistochemistry and real-time polymerase chain reaction analyses of pancreatic tissue. Findings were compared to those obtained with acellular materials simply sealing the wound. RESULTS: In the PF model, the ascitic levels of pancreatic enzymes were transiently up-regulated. Inflammation and necrosis were histologically observed in a wide range. Islets were damaged even in remote areas. Transplantation of multilayered fibroblast sheets dramatically reduced the ascitic leakage of enzymes, suppressed inflammation, and broadly preserved the islets. Compared with acellular materials, these sheets offered superior prevention of cellular activity through the spaciotemporal regulation of fibrosis and angiogenesis. Notably, the leakage hole appeared to have been plugged with the fibrotic matrix, which might have been the most crucial mechanism minimizing pancreatic damage. CONCLUSIONS: The autologous transplantation of multilayered fibroblast sheets significantly prevented PF and protected the pancreas, underscoring the potential utility of this approach for POPF prevention.

4.
J Pharm Biomed Anal ; 198: 114015, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33725588

RESUMO

We demonstrated that effects of serum matrix on molecular interactions between drugs and target proteins can be investigated in real time using magnetic bio-sensing techniques. A giant magneto-resistive (GMR) sensor was used on which target proteins were fixed and superparamagnetic nanoparticles (diameter: 50 nm) conjugated with drug were used in phosphate buffer, with and without serum. In this study, the following drug-protein pairs were investigated: quercetin and cAMP-dependent protein kinase A (PKA), Infliximab and tumor necrosis factor alpha (TNFα), and Bevacizumab and vascular endothelial growth factor (VEGF). For the quercetin and PKA pair, the time profile of the signal from the GMR sensor due to binding between quercetin and PKA clearly changed before and after the addition of serum. Moreover, it was revealed that not only the association process, but also the dissociation process was influenced by the addition of serum, suggesting that the quercetin and PKA complex may partially contain serum proteins, which affect the formation and stability of the complex. For antibody drugs, little effects of serum matrix were observed on both the association and dissociation processes. These clear differences may be attributed to the hydrophobic and electrostatic character of the drug molecule, target protein, and serum proteins. The real-time monitoring of molecular interactions in a biological matrix enabled by the GMR bio-sensing technique is a powerful tool to investigate such complicated molecular interactions. Understanding the molecular interactions that occur in a biological matrix is indispensable for determining the mechanism of action of the drugs and pharmacokinetics/pharmacodynamics inside the body. Additionally, this method can be applied for the analysis of the influence of any kind of third molecule that may have some interaction between two molecules, for example, an inhibitor drug against the interaction between two kinds of proteins.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Preparações Farmacêuticas , Magnetismo , Fator A de Crescimento do Endotélio Vascular
5.
J Cardiothorac Surg ; 15(1): 317, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059713

RESUMO

BACKGROUND: Despite the inferior patency compared to arterial grafts, a saphenous vein graft (SVG) is widely used for coronary artery bypass grafting (CABG). A lower atherosclerosis rate and higher patency have been reported for SVG obtained via the no-touch technique (NT) than via conventional preparation (CV). Although CV-mediated endothelial dysfunction is implied, the precise mechanism underlying the higher patency with NT is poorly understood. METHODS: Human residual SVGs during CABG and SVG sections after autopsy were analyzed. The endothelial surface was observed using scanning electron microscopy (SEM) and blindly compared between CV and NT. The endothelial integrity was also analyzed with immunohistochemistry. RESULTS: Unexpectedly, the hyperfine structure on SEM was comparable between CV and NT before grafting, and microvillus, a characteristic of endothelium, was indistinguishable between them. Von Willebrand Factor, an endothelial marker, was equally detected throughout the vascular wall in both groups from residual and postmortem sections. CONCLUSIONS: The morphological integrity of the endothelium was successfully preserved in SVG with CV, even at an ultrastructural level. Although its functionality remains to be addressed, other factors than the endothelium may be involved in the high patency obtained by NT. The present findings suggest that the characteristics of NT and surgical methodology should be reconsidered.


Assuntos
Endotélio Vascular/ultraestrutura , Veia Safena/transplante , Grau de Desobstrução Vascular , Idoso , Ponte de Artéria Coronária , Feminino , Humanos , Masculino , Manejo de Espécimes , Coleta de Tecidos e Órgãos
6.
Biochem Biophys Res Commun ; 533(3): 548-552, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977947

RESUMO

Wnt/ß-catenin signaling is important for development and progression of colorectal cancer (CRC). The degradation complex for ß-catenin is functionally impaired in CRC cells, thereby resulting in the accumulation of ß-catenin and its translocation into the nucleus. Nuclear ß-catenin interacts with and co-activates T cell factor4 (TCF4), resulting in ß-catenin/TCF4-dependent transcription. Therefore, nuclear ß-catenin has been categorized as the main driving force in the tumorigenesis of CRC. Recent studies reveal that Jun activation domain-binding protein 1 (JAB1) enhances the degradation of seven in absentia homolog-1 (SIAH-1), a putative E3 ubiquitin ligase of ß-catenin, and positively regulates the expression of total ß-catenin in human CRC cells. An another recent study also shows that nuclear ß-catenin is ubiquitinated and degraded by an E3 ubiquitin ligase, tripartite motif-containing protein 33 (TRIM33). However, the regulatory mechanism for the expression of nuclear ß-catenin remains to be fully understood. In this study, we have demonstrated that JAB1 positively regulates the expression of nuclear ß-catenin, c-MYC as a ß-catenin/TCF4 target, and cell cycle regulators, such as Ki-67 and topoisomerase IIα, in human CRC cells. Taken together, these results suggest that JAB1 is considered as a promising target for novel CRC therapy.


Assuntos
Complexo do Signalossomo COP9/fisiologia , Neoplasias Colorretais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Peptídeo Hidrolases/fisiologia , beta Catenina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
7.
Eur J Cardiothorac Surg ; 56(6): 1062-1074, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329857

RESUMO

OBJECTIVES: Cell therapy provides a suitable environment for regeneration through paracrine effects such as secretion of growth factors. Cardiosphere-derived cells (CDCs) have a high capacity for growth factor secretion and are an attractive target for clinical applications. In particular, a cell sheet technique was reported to have clinical advantages by covering a specific region. Here, we examined the effect of the hypoxic-conditioned (HC) autologous CDC sheet therapy on a rabbit chronic myocardial infarction model. METHODS: CDC sheet function was assessed by the enzyme-linked immunosorbent assay and quantified by polymerase chain reaction in vitro (days 1-3 of conditioning). The rabbit chronic myocardial infarction model was established by left coronary ligation. Autologous CDCs were isolated from the left atrial specimen; CDC sheets with or without 2-day HC were transplanted onto the infarcted hearts at 4 weeks. The cardiac function was assessed by an echocardiography at 0, 4 and 8 weeks. A histological analysis of the host hearts was performed by tomato lectin staining at 8 weeks. RESULTS: The optimal HC duration was 48 h. HC significantly increased the mRNA expression levels of VEGF and ANG2 on day 2 compared to the normoxic-conditioned (NC) group. The HC group showed significant improvement in the left ventricular ejection fraction (64.4% vs 58.8% and 53.4% in the NC and control) and a greater lectin-positive area in the ischaemic region (HC:NC:control = 13:8:2). CONCLUSIONS: HC enhances the paracrine effect of a CDC sheet on angiogenesis to improve cardiac function in the chronic myocardial infarction model, which is essential for cardiomyocyte proliferation during cardiac regeneration.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Transplante de Células-Tronco , Função Ventricular Esquerda/fisiologia , Animais , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Masculino , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Coelhos
8.
J Mol Cell Cardiol ; 128: 38-50, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30625302

RESUMO

RATIONALE: LonP1 is an essential mitochondrial protease, which is crucial for maintaining mitochondrial proteostasis and mitigating cell stress. However, the importance of LonP1 during cardiac stress is largely unknown. OBJECTIVE: To determine the functions of LonP1 during ischemia/reperfusion (I/R) injury in vivo, and hypoxia-reoxygenation (H/R) stress in vitro. METHODS AND RESULTS: LonP1 was induced 2-fold in wild-type mice during cardiac ischemic preconditioning (IPC), which protected the heart against ischemia-reperfusion (I/R) injury. In contrast, haploinsufficiency of LonP1 (LONP1+/-) abrogated IPC-mediated cardioprotection. Furthermore, LONP1+/- mice showed significantly increased infarct size after I/R injury, whereas mice with 3-4 fold cardiac-specific overexpression of LonP1 (LonTg) had substantially smaller infarct size and reduced apoptosis compared to wild-type controls. To investigate the mechanisms underlying cardioprotection, LonTg mice were subjected to ischemia (45 min) followed by short intervals of reperfusion (10, 30, 120 min). During early reperfusion, the left ventricles of LonTg mice showed substantially reduced oxidative protein damage, maintained mitochondrial redox homeostasis, and showed a marked downregulation of both Complex I protein level and activity in contrast to NTg mice. Conversely, when LonP1 was knocked down in isolated neonatal rat ventricular myocytes (NRVMs), an up-regulation of Complex I subunits and electron transport chain (ETC) activities was observed, which was associated with increased superoxide production and reduced respiratory efficiency. The knockdown of LonP1 in NRVMs caused a striking dysmorphology of the mitochondrial inner membrane, mitochondrial hyperpolarization and increased hypoxia-reoxygenation (H/R)-activated apoptosis. Whereas, LonP1 overexpression blocked H/R-induced cell death. CONCLUSIONS: LonP1 is an endogenous mediator of cardioprotection. Our findings show that upregulation of LonP1 mitigates cardiac injury by preventing oxidative damage of proteins and lipids, preserving mitochondrial redox balance and reprogramming bioenergetics by reducing Complex I content and activity. Mechanisms that promote the upregulation of LonP1 could be beneficial in protecting the myocardium from cardiac stress and limiting I/R injury.


Assuntos
Proteases Dependentes de ATP/genética , Proteínas Mitocondriais/genética , Infarto do Miocárdio/genética , Estresse Oxidativo/genética , Traumatismo por Reperfusão/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica/genética , Precondicionamento Isquêmico Miocárdico , Lipídeos/genética , Camundongos , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Superóxidos/metabolismo
9.
J Mol Cell Cardiol ; 92: 134-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26868976

RESUMO

Mitochondrial autophagy plays an important role in mediating mitochondrial quality control. Evaluating the extent of mitochondrial autophagy is challenging in the adult heart in vivo. Keima is a fluorescent protein that emits different colored signals at acidic and neutral pHs. Keima targeted to mitochondria (Mito-Keima) is useful in evaluating the extent of mitochondrial autophagy in cardiomyocytes in vitro. In order to evaluate the level of mitochondrial autophagy in the heart in vivo, we generated adeno-associated virus (AAV) serotype 9 harboring either Mito-Keima or Lamp1-YFP. AAV9-Mito-Keima and AAV9-Lamp1-YFP were administered intravenously and mice were subjected to either forty-eight hours of fasting or normal chow. Thin slices of the heart prepared within cold PBS were subjected to confocal microscopic analyses. The acidic dots Mito-Keima elicited by 561nm excitation were co-localized with Lamp1-YFP dots (Pearson's correlation, 0.760, p<0.001), confirming that the acidic dots of Mito-Keima were localized in lysosomes. The area co-occupied by Mito-Keima puncta with 561nm excitation and Lamp1-YFP was significantly greater 48h after fasting. Electron microscopic analyses indicated that autophagosomes containing only mitochondria were observed in the heart after fasting. The mitochondrial DNA content and the level of COX1/GAPDH, indicators of mitochondrial mass, were significantly smaller in the fasting group than in the control group, consistent with the notion that lysosomal degradation of mitochondria is stimulated after fasting. In summary, the level of mitochondrial autophagy in the adult heart can be evaluated with intravenous injection of AAV-Mito-Keima and AAV-Lamp1-YFP and confocal microscopic analyses.


Assuntos
Autofagia , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Animais , DNA Mitocondrial/ultraestrutura , Dependovirus/genética , Concentração de Íons de Hidrogênio , Proteína 1 de Membrana Associada ao Lisossomo/genética , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Microscopia Confocal , Mitocôndrias/ultraestrutura , Miócitos Cardíacos/ultraestrutura
10.
Biochem J ; 443(2): 573-84, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280412

RESUMO

Mitochondria play key roles in essential cellular functions, such as energy production, metabolic pathways and aging. Growth factor-mediated expression of the mitochondrial OXPHOS (oxidative phosphorylation) complex proteins has been proposed to play a fundamental role in metabolic homoeostasis. Although protein translation is affected by general RNA-binding proteins, very little is known about the mechanism involved in mitochondrial OXPHOS protein translation. In the present study, serum stimulation induced nuclear-encoded OXPHOS protein expression, such as NDUFA9 [NADH dehydrogenase (ubiquinone) 1α subcomplex, 9, 39 kDa], NDUFB8 [NADH dehydrogenase (ubiquinone) 1ß subcomplex, 8, 19 kDa], SDHB [succinate dehydrogenase complex, subunit B, iron sulfur (Ip)] and UQCRFS1 (ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1), and mitochondrial ATP production, in a translation-dependent manner. We also observed that the major ribonucleoprotein YB-1 (Y-box-binding protein-1) preferentially bound to these OXPHOS mRNAs and regulated the recruitment of mRNAs from inactive mRNPs (messenger ribonucleoprotein particles) to active polysomes. YB-1 depletion led to up-regulation of mitochondrial function through induction of OXPHOS protein translation from inactive mRNP release. In contrast, YB-1 overexpression suppressed the translation of these OXPHOS mRNAs through reduced polysome formation, suggesting that YB-1 regulated the translation of mitochondrial OXPHOS mRNAs through mRNA binding. Taken together, our findings suggest that YB-1 is a critical factor for translation that may control OXPHOS activity.


Assuntos
Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteínas/metabolismo , Soro/química , Proteína 1 de Ligação a Y-Box/metabolismo , Trifosfato de Adenosina/metabolismo , Células HeLa , Humanos , Oxirredução , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , Regulação para Cima
11.
Mol Med ; 14(9-10): 599-607, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18596870

RESUMO

Chronic fatigue syndrome (CFS) is a clinically defined condition characterized by long-lasting disabling fatigue. Because of the unknown mechanism underlying this syndrome, there still is no specific biomarker for objective assessment of the pathological fatigue. We have compared gene expression profiles in peripheral blood between 11 drug-free patients with CFS and age- and sex-matched healthy subjects using a custom microarray carrying complementary DNA probes for 1,467 stress-responsive genes. We identified 12 genes whose mRNA levels were changed significantly in CFS patients. Of these 12 genes, quantitative real-time PCR validated the changes in 9 genes encoding granzyme in activated T or natural killer cells (GZMA), energy regulators (ATP5J2, COX5B, and DBI), proteasome subunits (PSMA3 and PSMA4), putative protein kinase c inhibitor (HINT ), GTPase (ARHC), and signal transducers and activators of transcription 5A (STAT5A). Next, we performed the same microarray analysis on 3 additional CFS patients and 20 other patients with the chief complaint of long-lasting fatigue related to other disorders (non-CFS patients) and found that the relative mRNA expression of 9 genes classified 79% (11/14) of CFS and 85% (17/20) of the non-CFS patients. Finally, real-time PCR measurements of the levels of the 9 involved mRNAs were done in another group of 18 CFS and 12 non-CFS patients. The expression pattern correctly classified 94% (17/18) of CFS and 92% (11/12) of non-CFS patients. Our results suggest that the defined gene cluster (9 genes) may be useful for detecting pathological responses in CFS patients and for differential diagnosis of this syndrome.


Assuntos
Diagnóstico Diferencial , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/genética , Marcadores Genéticos , Adolescente , Adulto , Idoso , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA