Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(34): 8212-8219, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34415767

RESUMO

High efficiency thermoelectric (TE) materials still require high thermopower for energy harvesting applications. A simple elemental metallic semiconductor, tellurium (Te), has been considered critical to realize highly efficient TE conversion due to having a large effective band valley degeneracy. This paper demonstrates a novel approach to directly probe the out-of-plane Seebeck coefficient for one-dimensional Te quantum wires (QWs) formed locally in the aluminum oxide layer by well-controlled electrical breakdown at 300 K. Surprisingly, the out-of-plane Seebeck coefficient for these Te QWs ≈ 0.8 mV/K at 300 K. This thermopower enhancement for Te QWs is due to Te intrinsic nested band structure and enhanced energy filtering at Te/AO interfaces. Theoretical calculations support the enhanced high Seebeck coefficient for elemental Te QWs in the oxide layer. The local-probed observation and detecting methodology used here offers a novel route to designing enhanced thermoelectric materials and devices in the future.

2.
ACS Appl Mater Interfaces ; 11(26): 23303-23312, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184861

RESUMO

We investigate the intrinsic thermoelectric (TE) properties of the metal-diffused aluminum oxide (AO) layer in metal/AO/metal structures, where the metallic conducting filaments (CFs) were locally formed in the structures via an electrical breakdown (EBD) process as shown by resistive switching memory devices, by directly measuring cross-plane Seebeck coefficients on the CF-containing insulating AO layers. The results showed that the Seebeck coefficients of the CF-containing AO layer in metal/AO/metal structures were influenced by the generation of the metallic CFs, which is due to the diffusion of the metal into the insulating AO layers when exposed to a temperature gradient in the direction of the cross plane of the sample. In addition, the increase in the Seebeck coefficients of the CF-containing AO layer when the number of EBD-processed patterns was increased is satisfactorily explained by the low-energy carrier (i.e., minority carriers) filtering through the metal-oxide interfacial barriers in the metal/AO/metal structures.

3.
Nature ; 560(7720): E36, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907793

RESUMO

In this Letter, owing to an error during the production process, 'θH' was incorrectly written as 'θΗH' six times in the paragraph starting "Up to now,…". These errors have been corrected online.

4.
Nature ; 558(7708): 95-99, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785052

RESUMO

The Peltier effect, discovered in 1834, converts a charge current into a heat current in a conductor, and its performance is described by the Peltier coefficient, which is defined as the ratio of the generated heat current to the applied charge current1,2. To exploit the Peltier effect for thermoelectric cooling or heating, junctions of two conductors with different Peltier coefficients have been believed to be indispensable. Here we challenge this conventional wisdom by demonstrating Peltier cooling and heating in a single material without junctions. This is realized through an anisotropic magneto-Peltier effect in which the Peltier coefficient depends on the angle between the directions of a charge current and magnetization in a ferromagnet. By using active thermography techniques3-10, we observe the temperature change induced by this effect in a plain nickel slab. We find that the thermoelectric properties of the ferromagnet can be redesigned simply by changing the configurations of the charge current and magnetization, for instance, by shaping the ferromagnet so that the current must flow around a curve. Our experimental results demonstrate the suitability of nickel for the anisotropic magneto-Peltier effect and the importance of spin-orbit interaction in its mechanism. The anisotropic magneto-Peltier effect observed here is the missing thermoelectric phenomenon in ferromagnetic materials-the Onsager reciprocal of the anisotropic magneto-Seebeck effect previously observed in ferromagnets-and its simplicity might prove useful in developing thermal management technologies for electronic and spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA