Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3293, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632239

RESUMO

DNA-based artificial motors have allowed the recapitulation of biological functions and the creation of new features. Here, we present a molecular robotic system that surveys molecular environments and reports spatial information in an autonomous and repeated manner. A group of molecular agents, termed 'crawlers', roam around and copy information from DNA-labeled targets, generating records that reflect their trajectories. Based on a mechanism that allows random crawling, we show that our system is capable of counting the number of subunits in example molecular complexes. Our system can also detect multivalent proximities by generating concatenated records from multiple local interactions. We demonstrate this capability by distinguishing colocalization patterns of three proteins inside fixed cells under different conditions. These mechanisms for examining molecular landscapes may serve as a basis towards creating large-scale detailed molecular interaction maps inside the cell with nanoscale resolution.


Assuntos
Procedimentos Cirúrgicos Robóticos , DNA , Proteínas , Fenômenos Biofísicos , Armazenamento e Recuperação da Informação
2.
Nat Methods ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509327

RESUMO

Spatially resolved omics technologies are transforming our understanding of biological tissues. However, the handling of uni- and multimodal spatial omics datasets remains a challenge owing to large data volumes, heterogeneity of data types and the lack of flexible, spatially aware data structures. Here we introduce SpatialData, a framework that establishes a unified and extensible multiplatform file-format, lazy representation of larger-than-memory data, transformations and alignment to common coordinate systems. SpatialData facilitates spatial annotations and cross-modal aggregation and analysis, the utility of which is illustrated in the context of multiple vignettes, including integrative analysis on a multimodal Xenium and Visium breast cancer study.

3.
Br J Cancer ; 127(11): 2072-2085, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175617

RESUMO

BACKGROUND: Advanced gastrointestinal stromal tumour (GIST) is characterised by genomic perturbations of key cell cycle regulators. Oncogenic activation of CDK4/6 results in RB1 inactivation and cell cycle progression. Given that single-agent CDK4/6 inhibitor therapy failed to show clinical activity in advanced GIST, we evaluated strategies for maximising response to therapeutic CDK4/6 inhibition. METHODS: Targeted next-generation sequencing and multiplexed protein imaging were used to detect cell cycle regulator aberrations in GIST clinical samples. The impact of inhibitors of CDK2, CDK4 and CDK2/4/6 was determined through cell proliferation and protein detection assays. CDK-inhibitor resistance mechanisms were characterised in GIST cell lines after long-term exposure. RESULTS: We identify recurrent genomic aberrations in cell cycle regulators causing co-activation of the CDK2 and CDK4/6 pathways in clinical GIST samples. Therapeutic co-targeting of CDK2 and CDK4/6 is synergistic in GIST cell lines with intact RB1, through inhibition of RB1 hyperphosphorylation and cell proliferation. Moreover, RB1 inactivation and a novel oncogenic cyclin D1 resulting from an intragenic rearrangement (CCND1::chr11.g:70025223) are mechanisms of acquired CDK-inhibitor resistance in GIST. CONCLUSIONS: These studies establish the biological rationale for CDK2 and CDK4/6 co-inhibition as a therapeutic strategy in patients with advanced GIST, including metastatic GIST progressing on tyrosine kinase inhibitors.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Quinase 6 Dependente de Ciclina , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética
4.
Nat Commun ; 5: 4509, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25060237

RESUMO

Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Células COS , Fusão Celular , Membrana Celular/química , Chlorocebus aethiops , Colesterol/metabolismo , Química Click , Citoesqueleto/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Membrana/análise , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA