Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1324196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347961

RESUMO

The spice turmeric, which has the Latin name Curcuma longa (C. longa), has various physiological effects. This study evaluated the effects of a hot water mixture with supercritical carbon dioxide C. longa extracts, CLE, and the potential active components of C. longa, turmeronols A and B and bisacurone on inflammation and glucose metabolism. First, we investigated the effect of CLE and the potential active components of C. longa on lipopolysaccharide-induced inflammation in RAW264.7 macrophages. We found a significant decrease in the production of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide with CLE, turmeronol A, and bisacurone, Significant inhibition of each of these substances was also observed, except for TNF-α with turmeronol B. The second part of our work was a 12-week randomized, double-blind, placebo-controlled study in healthy but borderline adults aged 40 to 69 years with overweight and normal/prediabetes glycemia. We compared blood inflammatory and glycometabolic markers in the CLE (n = 55) and placebo groups (n = 55). We found significantly lower serum high-sensitivity C-reactive protein and hemoglobin A1c levels in the CLE group. This group also showed significant improvements in postprandial hyperglycemia and insulin sensitivity indices. Our findings indicate that CLE may reduce low-grade inflammation and thus improve insulin sensitivity and postprandial hyperglycemia. Clinical trial registration: https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000051492, UMIN-CTR, UMIN000045106.

2.
J Pharmacol Sci ; 133(1): 53-56, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28057412

RESUMO

Inflammatory macrophages play a fundamental role in neuropathic pain. In this study, we demonstrate the effects of peripheral interleukin-13 (IL-13) on neuropathic pain after partial sciatic nerve (SCN) ligation (PSL) in mice. IL-13 receptor α1 was upregulated in accumulating macrophages in the injured SCN after PSL. Treatment with IL-13 reduced inflammatory macrophage-dominant molecules and increased suppressive macrophage-dominant molecules in cultured lipopolysaccharide-stimulated peritoneal macrophages and ex vivo SCN subjected to PSL. Moreover, the perineural administration of IL-13 relieved tactile allodynia after PSL. These results suggest that IL-13 reverses inflammatory macrophage-dependent neuropathic pain via a phenotype shift toward suppressive macrophages.


Assuntos
Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-13/administração & dosagem , Interleucina-13/uso terapêutico , Macrófagos/metabolismo , Nervo Isquiático/lesões , Animais , Células Cultivadas , Mediadores da Inflamação/metabolismo , Ligadura , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Receptores de Interleucina-13/metabolismo , Regulação para Cima
3.
Pain ; 156(4): 684-693, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25630024

RESUMO

There is increasing evidence that inflammatory (M1-polarized) macrophages drive the nonresolving neuroinflammation that causes neuropathic pain after nerve injury. As interleukin-4 (IL-4) promotes the suppressive (M2-polarized) state in macrophages, we examined whether exploiting an IL-4-mediated pathway could ameliorate M1 macrophage-dependent neuropathic pain. The mRNA and protein expression of IL-4 receptor α chain (IL-4Rα) were upregulated in accumulating F4/80 macrophages in injured sciatic nerve (SCN). In mouse macrophage cell line J774A.1, IL-4 downregulated the mRNA expression of M1 macrophage-specific molecules (IL-1ß, CC chemokine ligand 3, and CD86) normally provoked by lipopolysaccharide, while increasing the mRNA expression of M2 macrophage-specific molecules (arginase-1, IL-10, and CD206) through a STAT6-mediated pathway. In ex vivo SCN culture, M1 molecules were highly expressed in the injured SCN on day 7 after partial SCN ligation (PSL) but were decreased by IL-4 treatment. In contrast, M2 molecules were upregulated by IL-4. IL-4 also increased phosphorylated STAT6 (pSTAT6) expression and shifted IL-1ß M1 macrophages toward a CD206 M2 phenotype. Perineural administration of IL-4 in mice subject to PSL ameliorated development and maintenance of tactile allodynia and thermal hyperalgesia. These effects of IL-4 were based on that IL-4 treatment increased the proportions of pSTAT6 and CD206 macrophages in injured SCN on day 14 after PSL. We found that neuropathic pain can be ameliorated by IL-4 treatment, which exerts its therapeutic effect on accumulating macrophages through a STAT6-dependent pathway. A shift in macrophage phenotype from the inflammatory to the suppressive phenotype, driven by IL-4R signaling, may have benefits in the treatment of neuropathic pain.


Assuntos
Antirreumáticos/uso terapêutico , Hiperalgesia/fisiopatologia , Inflamação , Interleucina-4/uso terapêutico , Macrófagos/efeitos dos fármacos , Ciática/complicações , Animais , Antirreumáticos/farmacologia , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Medição da Dor , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fator de Transcrição STAT6/metabolismo , Ciática/patologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA