Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 28(1): 23-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018815

RESUMO

Mesenchymal stem/stromal cell (MSC)-based therapies have been gaining increasing attention owing to their application in various diseases and conditions. In this study, we aimed to identify the optimal condition for industrial-scale MSC manufacturing. MSCs were isolated from umbilical cord (UC) tissues by implementing the explant method (Exp) or a collagenase based-enzymatic digestion method (Col), using a good manufacturing practice-compatible serum-free medium developed in-house. Microarray analysis demonstrated that the gene expression profiles of Exp-MSCs and Col-MSCs did not significantly differ according to the method of isolation or the culture conditions used. The isolated UC-MSCs were then subjected to expansion using conventional static culture (ST) or microcarrier-based culture in stirred-tank bioreactors (MC). Metabolomic and cytokine array analyses were conducted to evaluate the biochemical status of the MSCs. However, no remarkable differences in the metabolic profile and cytokine secretome between ST-MSCs and MC-MSCs were observed. On the contrary, we observed for the first time that the hydrophobic components of ST-MSCs and MC-MSCs were different, which suggested that the cell membrane distribution of fatty acids and lipids was altered in the process of adaptation to shear stress in MC-MSCs. These results establish the flexibility of the isolation and expansion method for UC-MSCs during the manufacturing processes and provide new insights into the minor differences between expansion methods that may exert remarkable effects on MSCs. In conclusion, we demonstrated the feasibility of both Exp-MSCs and Col-MSCs and MC and ST culture methods for scale-up and scale-out of MSC production, as well as the equivalence of these cells. As for the industrialized mass production of MSCs, enzyme-based methods for isolation and cell expansion in a bioreactor were considered to be more suitable. The methods developed, which underwent comprehensive evaluation in this study, may contribute toward the provision of sufficient MSC sources and the establishment of cost-effective MSC therapies. Impact statement Our in-house-developed good manufacturing practice-grade serum-free medium could be used for both isolation (Exp and Col) and expansion (ST and MC) of umbilical cord (UC)-mesenchymal stem/stromal cells (MSCs). Characteristics of the obtained UC-MSCs were widely assessed with regard to gene expression, metabolome, and secretome. Cellular characteristics and efficacy were observed to be equivalently maintained among whichever technique was applied. In addition, our research presents the first evidence that bioreactor and microcarrier-based MSC cultures alter the fatty acid and phospholipid composition of MSCs. These results provide new insights into the differences between expansion methods that may exert remarkable effects on MSCs.


Assuntos
Células-Tronco Mesenquimais , Cordão Umbilical , Reatores Biológicos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura
2.
Biotechnol J ; 16(6): e2000558, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33545746

RESUMO

Mesenchymal stromal cells (MSCs) have been isolated from numerous sources and are potentially therapeutic against various diseases. Umbilical cord-derived MSCs (UC-MSCs) are considered superior to other tissue-derived MSCs since they have a higher proliferation rate and can be procured using less invasive surgical procedures. However, it has been recently reported that 2D culture systems, using conventional cell culture flasks, limit the mass production of MSCs for cell therapy. Therefore, the development of alternative technologies, including microcarrier-based cell culture in bioreactors, is required for the large-scale production and industrialization of MSC therapy. In this study, we aimed to optimize the culture conditions for UC-MSCs by using a good manufacturing practice (GMP)-compatible serum-free medium, developed in-house, and a small-scale (30 mL) bioreactor, which was later scaled up to 500 mL. UC-MSCs cultured in microcarrier-based bioreactors (MC-UC-MSCs) showed characteristics equivalent to those cultured statically in conventional cell culture flasks (ST-UC-MSCs), fulfilling the minimum International Society for Cellular Therapy criteria for MSCs. Additionally, we report, for the first time, the equivalent therapeutic effect of MC-UC-MSCs and ST-UC-MSCs in immunodeficient mice (graft-versus-host disease model). Lastly, we developed a semi-automated cell dispensing system, without bag-to-bag variation in the filled volume or cell concentration. In summary, our results show that the combination of our GMP-compatible serum-free and microcarrier-based culture systems is suitable for the mass production of MSCs at an industrial scale. Further improvements in this microcarrier-based cell culture system can contribute to lowering the cost of therapy and satisfying several unmet medical needs.


Assuntos
Células-Tronco Mesenquimais , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Camundongos , Cordão Umbilical
3.
Proc Natl Acad Sci U S A ; 113(44): 12478-12483, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27738243

RESUMO

Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion. BMP4, which also stimulates conversion to naive pluripotency, bypassed the need for exogenous LPA by increasing the activity of the extracellular LPA-producing enzyme autotaxin (ATX). We found that LIF and LPA-LPAR1 signaling affect the abundance of signal transducer and activator of transcription 3 (STAT3), which induces a previously unappreciated Kruppel-like factor (KLF)2-KLF4-PR domain 14 (PRDM14) transcription factor circuit key to establish naive pluripotency. AA also affects this transcription factor circuit by controlling PRDM14 expression. Thus, our study reveals that ATX-mediated autocrine lipid signaling promotes naive pluripotency by intersecting with LIF and BMP4 signaling.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Fator Inibidor de Leucemia/farmacologia , Lisofosfolipídeos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Ácido Ascórbico/farmacologia , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Vitaminas/farmacologia
4.
Biochim Biophys Acta ; 1830(2): 2280-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22959078

RESUMO

BACKGROUND: The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies. SCOPE OF REVIEW: The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-ß family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells. MAJOR CONCLUSIONS: Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-ß family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells. GENERAL SIGNIFICANCE: Further mechanistic studies will provide a better understanding of the roles of TGF-ß family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.


Assuntos
Transdução de Sinais , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Camundongos
5.
Sci Signal ; 5(222): ra34, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22550340

RESUMO

Ectodomain shedding mediated by tumor necrosis factor-α (TNF-α)-converting enzyme [TACE; also known as ADAM17 (a disintegrin and metalloproteinase 17)] provides an important switch in regulating cell proliferation, inflammation, and cancer progression. TACE-mediated ectodomain cleavage is activated by signaling of the mitogen-activated protein kinases (MAPKs) p38 and ERK (extracellular signal-regulated kinase). Here, we found that under basal conditions, TACE was predominantly present as dimers at the cell surface, which required its cytoplasmic domain and enabled efficient association with tissue inhibitor of metalloproteinase-3 (TIMP3) and silencing of TACE activity. Upon activation of the ERK or p38 MAPK pathway, the balance shifted from TACE dimers to monomers, and this shift was associated with increased cell surface presentation of TACE and decreased TIMP3 association, which relieved the inhibition of TACE by TIMP3 and increased TACE-mediated proteolysis of transforming growth factor-α. Thus, cell signaling altered the dimer-monomer equilibrium and inhibitor association to promote activation of TACE-mediated ectodomain shedding, a regulatory mechanism that may extend to other ADAM proteases.


Assuntos
Proteínas ADAM/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Multimerização Proteica/fisiologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Células CHO , Cricetinae , Cricetulus , Ativação Enzimática/fisiologia , Humanos , Estrutura Terciária de Proteína , Inibidor Tecidual de Metaloproteinase-3/genética , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA