Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(5): 320, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198149

RESUMO

Infertility occurs in 15% of couples worldwide. Recurrent implantation failure (RIF) is one of the major problems in in vitro fertilization and embryo transfer (IVF-ET) programs, and how to manage patients with RIF to achieve successful pregnancy outcomes remains unresolved. Here, a uterine polycomb repressive complex 2 (PRC2)-regulated gene network was found to control embryo implantation. Our RNA-seq analyses of the human peri-implantation endometrium obtained from patients with RIF and fertile controls revealed that PRC2 components, including its core enzyme enhancer of zeste homolog 2 (EZH2)-catalyzing H3K27 trimethylation (H3K27me3) and their target genes are dysregulated in the RIF group. Although fertility of uterine epithelium-specific knockout mice of Ezh2 (eKO mice) was normal, Ezh2-deleted mice in the uterine epithelium and stroma (uKO mice) exhibited severe subfertility, suggesting that stromal Ezh2 plays a key role in female fertility. The RNA-seq and ChIP-seq analyses revealed that H3K27me3-related dynamic gene silencing is canceled, and the gene expression of cell-cycle regulators is dysregulated in Ezh2-deleted uteri, causing severe epithelial and stromal differentiation defects and failed embryo invasion. Thus, our findings indicate that the EZH2-PRC2-H3K27me3 axis is critical to preparing the endometrium for the blastocyst invasion into the stroma in mice and humans.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Complexo Repressor Polycomb 2 , Gravidez , Humanos , Feminino , Camundongos , Animais , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Ciclo Celular , Endométrio/metabolismo , Camundongos Knockout , Diferenciação Celular/genética , Blastocisto/metabolismo
2.
Nat Struct Mol Biol ; 27(10): 967-977, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895553

RESUMO

Gene regulation in the germline ensures the production of high-quality gametes, long-term maintenance of the species and speciation. Male germline transcriptomes undergo dynamic changes after the mitosis-to-meiosis transition and have been subject to evolutionary divergence among mammals. However, the mechanisms underlying germline regulatory divergence remain undetermined. Here, we show that endogenous retroviruses (ERVs) influence species-specific germline transcriptomes. After the mitosis-to-meiosis transition in male mice, specific ERVs function as active enhancers to drive germline genes, including a mouse-specific gene set, and bear binding motifs for critical regulators of spermatogenesis, such as A-MYB. This raises the possibility that a genome-wide transposition of ERVs rewired germline gene expression in a species-specific manner. Of note, independently evolved ERVs are associated with the expression of human-specific germline genes, demonstrating the prevalence of ERV-driven mechanisms in mammals. Together, we propose that ERVs fine-tune species-specific transcriptomes in the mammalian germline.


Assuntos
Retrovirus Endógenos/genética , Espermatogênese/genética , Espermatozoides/fisiologia , Animais , Cromatina/genética , Cromatina/virologia , Elementos Facilitadores Genéticos , Regulação Viral da Expressão Gênica , Humanos , Elementos Nucleotídeos Longos e Dispersos , Masculino , Mamíferos/genética , Mamíferos/virologia , Meiose , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose , Mutação , Proteínas Proto-Oncogênicas c-myb/genética , Sequências Repetitivas de Ácido Nucleico , Roedores/genética , Roedores/virologia , Espermatozoides/virologia , Transativadores/genética , Transcriptoma
3.
Nat Struct Mol Biol ; 27(10): 978-988, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895557

RESUMO

Owing to bursts in the expression of thousands of germline-specific genes, the testis has the most diverse and complex transcriptome of all organs. By analyzing the male germline of mice, we demonstrate that the genome-wide reorganization of super-enhancers (SEs) drives bursts in germline gene expression after the mitosis-to-meiosis transition. SE reorganization is regulated by two molecular events: the establishment of meiosis-specific SEs via A-MYB (MYBL1), a key transcription factor for germline genes, and the resolution of SEs in mitotically proliferating cells via SCML2, a germline-specific Polycomb protein required for spermatogenesis-specific gene expression. Before entry into meiosis, meiotic SEs are preprogrammed in mitotic spermatogonia to ensure the unidirectional differentiation of spermatogenesis. We identify key regulatory factors for both mitotic and meiotic enhancers, revealing a molecular logic for the concurrent activation of mitotic enhancers and suppression of meiotic enhancers in the somatic and/or mitotic proliferation phases.


Assuntos
Elementos Facilitadores Genéticos , Meiose/genética , Mitose/genética , Proteínas do Grupo Polycomb/genética , Proteínas Proto-Oncogênicas c-myb/genética , Espermatogênese/genética , Transativadores/genética , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteínas do Grupo Polycomb/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Espermatogônias/citologia , Espermatogônias/fisiologia , Transativadores/metabolismo , Cromossomo X/genética
4.
Biosci Biotechnol Biochem ; 84(5): 936-942, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31916916

RESUMO

Endocrine cells in the gastrointestinal tract secrete multiple hormones to maintain homeostasis in the body. In the present study, we generated intestinal organoids from the duodenum, jejunum, and ileum of Neurogenin 3 (Ngn3)-EGFP mice and examined how enteroendocrine cells (EECs) within organoid cultures resemble native epithelial cells in the gut. Transcriptome analysis of EGFP-positive cells from Ngn3-EGFP organoids showed gene expression pattern comparable to EECs in vivo. We also compared mRNAs of five major hormones, namely, ghrelin (Ghrl), cholecystokinin (Cck), Gip, secretin (Sct), and glucagon (Gcg) in organoids and small intestine along the longitudinal axis and found that expression patterns of these hormones in organoids were similar to those in native tissues. These findings suggest that an intestinal organoid culture system can be utilized as a suitable model to study enteroendocrine cell functions in vitro.


Assuntos
Duodeno/citologia , Células Enteroendócrinas/metabolismo , Íleo/citologia , Jejuno/citologia , Organoides/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Colecistocinina/genética , Colecistocinina/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Grelina/genética , Grelina/metabolismo , Glucagon/genética , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Secretina/genética , Secretina/metabolismo , Transdução de Sinais , Transcriptoma
5.
Genes Cells ; 19(8): 629-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24995522

RESUMO

Recent studies of the demethylation process in murine zygotes have shown that 5-methylcytosine (5mC) is first converted into 5-hydroxymethylcytosine (5hmC) or further-oxidized cytosines in the paternal genome by the maternal ten-eleven translocation 3 (TET3) enzyme. This process is crucial for normal embryogenesis, and our aim was to elucidate the effect of Tet3 on the maternal genome during female germ-line development. Immunofluorescence analysis showed that 5hmC was clearly present in fully grown oocytes but not in nongrowing and early growth-stage oocytes. The 5hmC in the maternal genome was clearly detectable in DNA methyltransferase 3-like enzyme (Dnmt3L)-null oocytes and their fertilized zygotes, although Dnmt3L is essential for DNA methylation in oocytes. An analysis using an enzyme digestion-based method showed that 5hmC was present in LTR retrotransposons from the late growth period of oocytes. Quantitative RT-PCR analysis showed that Tet3 expression was enhanced during oocyte growth and exhibited an approximately 40-fold increase between nongrowing and fully grown oocytes. Our results show that 5hmC is generated since the oocyte growth stage, accompanied by up-regulation of Tet3; 5hmC is located mainly in LTR retrotransposons, indicating that 5hmC generated in growth-stage oocytes is responsible for genomewide demethylation after fertilization.


Assuntos
Citosina/análogos & derivados , Oócitos/crescimento & desenvolvimento , 5-Metilcitosina/análogos & derivados , Animais , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Feminino , Genoma , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA