Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 34(12): 2485-2499, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34797640

RESUMO

Drug-induced liver injury is a leading cause of compound attrition during both preclinical and clinical drug development, and early strategies are in place to tackle this recurring problem. Human-relevant in vitro models that are more predictive of hepatotoxicity hazard identification, and that could be employed earlier in the drug discovery process, would improve the quality of drug candidate selection and help reduce attrition. We present an evaluation of four human hepatocyte in vitro models of increasing culture complexity (i.e., two-dimensional (2D) HepG2 monolayers, hepatocyte sandwich cultures, three-dimensional (3D) hepatocyte spheroids, and precision-cut liver slices), using the same tool compounds, viability end points, and culture time points. Having established the improved prediction potential of the 3D hepatocyte spheroid model, we describe implementing this model into an industrial screening setting, where the challenge was matching the complexity of the culture system with the scale and throughput required. Following further qualification and miniaturization into a 384-well, high-throughput screening format, data was generated on 199 compounds. This clearly demonstrated the ability to capture a greater number of severe hepatotoxins versus the current routine 2D HepG2 monolayer assay while continuing to flag no false-positive compounds. The industrialization and miniaturization of the 3D hepatocyte spheroid complex in vitro model demonstrates a significant step toward reducing drug attrition and improving the quality and safety of drugs, while retaining the flexibility for future improvements, and has replaced the routine use of the 2D HepG2 monolayer assay at GlaxoSmithKline.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Modelos Biológicos , Preparações Farmacêuticas/química , Esferoides Celulares/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Hepatócitos/patologia , Humanos , Masculino , Ratos , Ratos Wistar , Esferoides Celulares/patologia
2.
Chem Res Toxicol ; 25(10): 2067-82, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22931300

RESUMO

Drug-induced liver injury is the most common cause of market withdrawal of pharmaceuticals, and thus, there is considerable need for better prediction models for DILI early in drug discovery. We present a study involving 223 marketed drugs (51% associated with clinical hepatotoxicity; 49% non-hepatotoxic) to assess the concordance of in vitro bioactivation data with clinical hepatotoxicity and have used these data to develop a decision tree to help reduce late-stage candidate attrition. Data to assess P450 metabolism-dependent inhibition (MDI) for all common drug-metabolizing P450 enzymes were generated for 179 of these compounds, GSH adduct data generated for 190 compounds, covalent binding data obtained for 53 compounds, and clinical dose data obtained for all compounds. Individual data for all 223 compounds are presented here and interrogated to determine what level of an alert to consider termination of a compound. The analysis showed that 76% of drugs with a daily dose of <100 mg were non-hepatotoxic (p < 0.0001). Drugs with a daily dose of ≥100 mg or with GSH adduct formation, marked P450 MDI, or covalent binding ≥200 pmol eq/mg protein tended to be hepatotoxic (∼ 65% in each case). Combining dose with each bioactivation assay increased this association significantly (80-100%, p < 0.0001). These analyses were then used to develop the decision tree and the tree tested using 196 of the compounds with sufficient data (49% hepatotoxic; 51% non-hepatotoxic). The results of these outcome analyses demonstrated the utility of the tree in selectively terminating hepatotoxic compounds early; 45% of the hepatotoxic compounds evaluated using the tree were recommended for termination before candidate selection, whereas only 10% of the non-hepatotoxic compounds were recommended for termination. An independent set of 10 GSK compounds with known clinical hepatotoxicity status were also assessed using the tree, with similar results.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Fígado/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Árvores de Decisões , Glutationa/metabolismo , Humanos , Fígado/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA