Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 199(2): 210-226, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38526210

RESUMO

In avian embryos, xenoestrogens induce abnormalities in reproductive organs, particularly the testes and Müllerian ducts (MDs). However, the molecular mechanisms remain poorly understood. We investigated the effects of ethynylestradiol (EE2) exposure on gene expression associated with reproductive organ development in Japanese quail embryos. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis revealed that the left testis containing ovary-like tissues following EE2 exposure highly expressed the genes for steroidogenic enzymes (P450scc, P45017α, lyase, and 3ß-HSD) and estrogen receptor-ß, compared to the right testis. No asymmetry was found in these gene expression without EE2. EE2 induced hypertrophy in female MDs and suppressed atrophy in male MDs on both sides. RNA sequencing analysis of female MDs showed 1,366 differentially expressed genes between developing left MD and atrophied right MD in the absence of EE2, and these genes were enriched in Gene Ontology terms related to organogenesis, including cell proliferation, migration and differentiation, and angiogenesis. However, EE2 reduced asymmetrically expressed genes to 21. RT-qPCR analysis indicated that genes promoting cell cycle progression and oncogenesis were more highly expressed in the left MD than in the right MD, but EE2 eliminated such asymmetric gene expression by increasing levels on the right side. EE2-exposed males showed overexpression of these genes in both MDs. This study reveals part of the molecular basis of xenoestrogen-induced abnormalities in avian reproductive organs, where EE2 may partly feminize gene expression in the left testis, developing as the ovotestis, and induce bilateral MD malformation by canceling asymmetric gene expression underlying MD development.


Assuntos
Coturnix , Etinilestradiol , Regulação da Expressão Gênica no Desenvolvimento , Ductos Paramesonéfricos , Testículo , Animais , Masculino , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/embriologia , Testículo/patologia , Coturnix/embriologia , Coturnix/genética , Etinilestradiol/toxicidade , Ductos Paramesonéfricos/efeitos dos fármacos , Ductos Paramesonéfricos/embriologia , Ductos Paramesonéfricos/anormalidades , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Feminização/induzido quimicamente , Feminização/genética
2.
J Appl Toxicol ; 44(5): 699-711, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38102769

RESUMO

In ovo exposure to o,p'-dichloro-diphenyl-trichloroethane (o,p'-DDT) impairs reproduction by inducing malformation of the reproductive organs in birds, although the mechanism remains unclear. Here, we examined the effects of o,p'-DDT on the development of the reproductive organs, the expression of genes controlling sexual differentiation, and the plasma concentrations of testosterone and estradiol in Japanese quail embryos. o,p'-DDT-containing sesame oil was injected into the yolk sac on Embryonic Day (E) 3 at a dose of 500, 2,000, or 8,000 µg per egg. On E15, the reproductive organs were observed; the gonads and Müllerian ducts (MDs) were sampled to measure the mRNA of steroidogenic enzymes, sex steroid receptors, anti-Müllerian hormone (AMH), and AMH receptor 2 (AMHR2); blood samples were collected to assay plasma testosterone and estradiol levels; and the gonads were used for histological analysis. o,p'-DDT dose-dependently increased the prevalence of hypertrophic MDs in females and residual MDs in males. In female MDs, o,p'-DDT dose-dependently decreased estrogen receptor (ER) α, ERß, and AMHR2 mRNA expression. o,p'-DDT dose-dependently induced left-biased asymmetry of testis size, and ovary-like tissue was found in the left testis after exposure to 8,000 µg per egg o,p'-DDT, although asymmetric gene expression did not occur. o,p'-DDT did not affect ovarian tissue but did decrease 17α-hydroxylase/C17-20 lyase mRNA expression and dose-dependently increased ERß mRNA expression. o,p'-DDT decreased plasma testosterone concentrations in females. These findings suggest that o,p'-DDT induces hypertrophy of the MDs and ovarian tissue formation in the left testis. Abnormal MD development may be linked to altered gene expression for sensing estrogens and AMH signals.


Assuntos
Coturnix , Diferenciação Sexual , Animais , Masculino , Feminino , Coturnix/genética , Coturnix/metabolismo , Receptor beta de Estrogênio , DDT , Estradiol/metabolismo , Genitália , Testosterona , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA