Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(20): 2931-2934, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799233

RESUMO

The innovation of NO2 gas sensors is highly desirable in environmental monitoring and human safety. Herein, a macroporous SnO2/MoS2 inverse opal hierarchitecture has been constructed with substantial interface charge transfer, which realizes the efficient and stable detection of NO2 with an enhanced response, fast kinetics, and high selectivity at low temperatures.

2.
Nanoscale ; 13(47): 19783-19811, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34846414

RESUMO

Given the critical demands on energy conversion, storage, and transportation, tremendous interest has been devoted to the field of material development related to energy harvesting, recently. As the only route towards energy utilization, the carriers with the characteristics of low carbon are regarded as the future choice, e.g., hydrogen and ammonia. To this end, electrocatalysis provides a green way to access these substances. However, the unfulfilled conversion efficiency is the bottleneck for practical application. In this review, the promising characteristics of amorphous materials and the amorphous-induced electrocatalytic enhancement (AIEE) were emphasized. In the beginning, the characteristics of amorphous materials are briefly summarized. The basic mechanism of heterogeneous electrocatalytic reactions is illustrated, including the hydrogen/oxygen evolution and oxygen/nitrogen reduction. In the third part, the electrocatalytic performance of amorphous materials is discussed in detail, and the mechanism of AIEE is highlighted. In the last section of this review, the challenges and outlook for the development of amorphous enhanced electrocatalysis are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA