Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825009

RESUMO

The Ca2+-activated Cl- channel regulator CLCA1 potentiates the activity of the Ca2+-activated Cl- channel (CaCC) TMEM16A by directly engaging the channel at the cell surface, inhibiting its reinternalization and increasing Ca2+-dependent Cl- current (ICaCC) density. We now present evidence of functional pairing between two other CLCA and TMEM16 protein family members, namely CLCA4 and the CaCC TMEM16B. Similar to CLCA1, (i) CLCA4 is a self-cleaving metalloprotease, and the N-terminal portion (N-CLCA4) is secreted; (ii) the von Willebrand factor type A (VWA) domain in N-CLCA4 is sufficient to potentiate ICaCC in HEK293T cells; and (iii) this is mediated by the metal ion-dependent adhesion site motif within VWA. The results indicate that, despite the conserved regulatory mechanism and homology between CLCA1 and CLCA4, CLCA4-dependent ICaCC are carried by TMEM16B, rather than TMEM16A. Our findings show specificity in CLCA/TMEM16 interactions and suggest broad physiological and pathophysiological links between these two protein families.


Assuntos
Anoctaminas , Canais de Cloreto , Humanos , Anoctamina-1/metabolismo , Anoctamina-1/genética , Anoctaminas/metabolismo , Anoctaminas/genética , Anoctaminas/química , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Cloretos/metabolismo , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Domínios Proteicos
2.
Nat Commun ; 10(1): 4457, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575858

RESUMO

Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.


Assuntos
Trifosfato de Adenosina/metabolismo , Canalopatias/metabolismo , Predisposição Genética para Doença/genética , Deficiência Intelectual/metabolismo , Doenças Musculares/metabolismo , Mutação , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Linhagem Celular , Criança , Modelos Animais de Doenças , Fácies , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Coração , Cardiopatias/genética , Cardiopatias/metabolismo , Homozigoto , Humanos , Hipertricose/genética , Hipertricose/metabolismo , Deficiência Intelectual/parasitologia , Masculino , Complexo Mediador/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Doenças Musculares/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Linhagem , Fenótipo , Rubídio , Sequenciamento Completo do Genoma , Adulto Jovem , Peixe-Zebra
3.
J Biol Chem ; 293(6): 2041-2052, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29275331

RESUMO

The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9, the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (KATP) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which KATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium (86Rb+) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases KATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in KATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS.


Assuntos
Cardiomegalia/genética , Mutação com Ganho de Função , Hipertricose/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/genética , Animais , Cardiomegalia/metabolismo , Glibureto/química , Glibureto/metabolismo , Humanos , Hipertricose/metabolismo , Canais KATP/química , Canais KATP/genética , Canais KATP/metabolismo , Osteocondrodisplasias/metabolismo , Domínios Proteicos , Ratos , Receptores de Sulfonilureias/metabolismo
4.
J Biol Chem ; 292(22): 9164-9174, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420732

RESUMO

Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.


Assuntos
Canais de Cloreto/metabolismo , Magnésio/metabolismo , Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Substituição de Aminoácidos , Anoctamina-1 , Linhagem Celular , Canais de Cloreto/genética , Humanos , Proteínas de Neoplasias/genética , Domínios Proteicos , Estabilidade Proteica
5.
J Physiol ; 594(15): 4425-38, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27018980

RESUMO

KEY POINTS: Glucose transporters are central players in glucose homeostasis. There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium-coupled glucose transporters (SGLTs). In the present study, we report the use of a non-invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization. We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney. This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. ABSTRACT: The importance of sodium-coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine-18 labelled glucose molecular imaging probes and non-invasive positron emission tomography (PET) imaging. The probes were: α-methyl-4-[F-18]-fluoro-4-deoxy-d-glucopyranoside (Me-4FDG), a substrate for SGLTs; 4-deoxy-4-[F-18]-fluoro-d-glucose (4-FDG), a substrate for SGLTs and GLUTs; and 2-deoxy-2-[F-18]-fluoro-d-glucose (2-FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild-type, Sglt1(-/-) , Sglt2(-/-) and Glut2(-/-) mice and their dynamic whole-body distribution was determined using microPET. The distribution of 2-FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2-FDG in Glut2(-/-) mice, apart from a reduction in the rate of uptake into liver. The major differences between Me-4FDG and 2-FDG were that Me-4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me-4FDG in Sglt1(-/-) and Sglt2(-/-) mice. However, Me-4FDG was not reabsorbed in the kidney in Glut2(-/-) mice. There were no differences in Me-4FDG uptake into the heart of wild-type, Sglt1(-/-) and Sglt2(-/-) mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me-4FDG from the glomerular filtrate in wild-type mice and the absence of reabsorption in the kidney in Glut2(-/-) mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Desoxiglucose/análogos & derivados , Feminino , Radioisótopos de Flúor , Glucose/farmacocinética , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucosídeos , Coração/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/diagnóstico por imagem , Músculos/metabolismo , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas de Transporte de Sódio-Glucose/genética , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/metabolismo
6.
J Gen Physiol ; 146(6): 527-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621776

RESUMO

Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium ((86)Rb(+)) efflux assays, we show that K(ATP) channels formed with P429L, A475V, or C1039Y mutants enhance K(ATP) activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive K(ATP) channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation.


Assuntos
Cardiomegalia/genética , Hipertricose/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Receptores de Sulfonilureias/metabolismo , Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Cardiomegalia/metabolismo , Chlorocebus aethiops , Humanos , Hipertricose/metabolismo , Camundongos , Dados de Sequência Molecular , Osteocondrodisplasias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/genética
7.
Mediators Inflamm ; 2015: 497387, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26612971

RESUMO

Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases.


Assuntos
Antiporters/fisiologia , Asma/etiologia , Canais de Cloreto/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Neoplasias/fisiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Anoctamina-1 , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Fator de Transcrição STAT6/fisiologia , Transportadores de Sulfato
8.
Elife ; 42015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25781344

RESUMO

Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a paracrine fashion, and endogenous TMEM16A/Anoctamin1 conducts the currents. Exposure to exogenous CLCA1 increases cell surface levels of TMEM16A and cellular binding experiments indicate CLCA1 engages TMEM16A on the surface of these cells. Altogether, our data suggest that CLCA1 stabilizes TMEM16A on the cell surface, thus increasing surface expression, which results in increased calcium-dependent chloride currents. Our results identify the first Cl(-) channel target of the CLCA family of proteins and establish CLCA1 as the first secreted direct modifier of TMEM16A activity, delineating a unique mechanism to increase currents. These results suggest cooperative roles for CLCA and TMEM16 proteins in influencing the physiology of multiple tissues, and the pathology of multiple diseases, including asthma, COPD, cystic fibrosis, and certain cancers.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/metabolismo , Ativação do Canal Iônico , Proteínas de Neoplasias/metabolismo , Anoctamina-1 , Western Blotting , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Proteínas de Neoplasias/genética , Comunicação Parácrina/efeitos dos fármacos , Técnicas de Patch-Clamp , Ligação Proteica , Interferência de RNA
9.
Mol Pharm ; 10(10): 3959-66, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24010543

RESUMO

Channel replacement therapy, based on synthetic channel-forming peptides (CFPs) with the ability to supersede defective endogenous ion channels, is a novel treatment modality that may augment existing interventions against multiple diseases. Previously, we derived CFPs from the second transmembrane segment of the α-subunit of the glycine receptor, M2GlyR, which forms chloride-selective channels in its native form. The best candidate, NK4-M2GlyR T19R, S22W (p22-T19R, S22W), was water-soluble, incorporated into cell membranes and was nonimmunogenic, but lacked the structural properties for high conductance and anion selectivity when assembled into a pore. Further studies suggested that the threonine residues at positions 13, 17, and 20 line the pore of assembled p22-T19R, S22W, and here we used 2,3-diaminopropionic acid (Dap) substitutions to introduce positive charges to the pore-lining interface of the predicted p22-T19R, S22W channel. Dap-substituted p22-T19R, S22W peptides retained the α-helical secondary structure characteristic of their parent peptide, and induced short-circuit transepithelial currents when exposed to the apical membrane of Madin-Darby canine kidney (MDCK) cells; the sequences containing multiple Dap-substituted residues induced larger currents than the peptides with single or no Dap substitutions. To gain further insights into the effects of Dap residues on the properties of the putative pore, we performed two-electrode voltage clamp electrophysiology on Xenopus oocytes exposed to p22-T19R, S22W or its Dap-modified analogues. We observed that Dap-substituted peptides also induced significantly larger voltage-dependent currents than the parent compound, but there was no apparent change in reversal potential upon replacement of external Na+, Cl- or K+, indicating that these currents remained nonselective. These results suggest that the introduction of positively charged side chains in predicted pore-lining residues does not improve anion-to-cation selectivity, but results in higher conductance, perhaps due to higher oligomerization numbers.


Assuntos
Peptídeos/química , beta-Alanina/análogos & derivados , Canais Iônicos/química , Estrutura Secundária de Proteína , Receptores de Glicina/química , beta-Alanina/química
10.
J Biol Chem ; 287(50): 42138-49, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23112050

RESUMO

The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.


Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Metaloproteases/metabolismo , Proteólise , Linhagem Celular , Canais de Cloreto/genética , Humanos , Transporte de Íons/fisiologia , Metaloproteases/genética , Estrutura Terciária de Proteína
11.
Am J Physiol Cell Physiol ; 302(9): C1293-305, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159082

RESUMO

The Na(+)-glucose cotransporter hSGLT1 is a member of a class of membrane proteins that harness Na(+) electrochemical gradients to drive uphill solute transport. Although hSGLT1 belongs to one gene family (SLC5), recent structural studies of bacterial Na(+) cotransporters have shown that Na(+) transporters in different gene families have the same structural fold. We have constructed homology models of hSGLT1 in two conformations, the inward-facing occluded (based on vSGLT) and the outward open conformations (based on Mhp1), mutated in turn each of the conserved gates and ligand binding residues, expressed the SGLT1 mutants in Xenopus oocytes, and determined the functional consequences using biophysical and biochemical assays. The results establish that mutating the ligand binding residues produces profound changes in the ligand affinity (the half-saturation concentration, K(0.5)); e.g., mutating sugar binding residues increases the glucose K(0.5) by up to three orders of magnitude. Mutation of the external gate residues increases the Na(+) to sugar transport stoichiometry, demonstrating that these residues are critical for efficient cotransport. The changes in phlorizin inhibition constant (K(i)) are proportional to the changes in sugar K(0.5), except in the case of F101C, where phlorizin K(i) increases by orders of magnitude without a change in glucose K(0.5). We conclude that glucose and phlorizin occupy the same binding site and that F101 is involved in binding to the phloretin group of the inhibitor. Substituted-cysteine accessibility methods show that the cysteine residues at the position of the gates and sugar binding site are largely accessible only to external hydrophilic methanethiosulfonate reagents in the presence of external Na(+), demonstrating that the external sugar (and phlorizin) binding vestibule is opened by the presence of external Na(+) and closes after the binding of sugar and phlorizin. Overall, the present results provide a bridge between kinetics and structural studies of cotransporters.


Assuntos
Transportador 1 de Glucose-Sódio/química , Transportador 1 de Glucose-Sódio/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Cinética , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Xenopus laevis
12.
IUBMB Life ; 61(10): 971-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19787700

RESUMO

The ATP-sensitive potassium (K(ATP)) channel is expressed in most excitable tissues and plays a critical role in numerous physiological processes by coupling intracellular energetics to electrical activity. The channel is comprised of four Kir6.x subunits associated with four regulatory sulfonylurea receptors (SUR). Intracellular ATP acts on Kir6.x to inhibit channel activity, while MgADP stimulates channel activity through SUR. Changes in the cytosolic [ATP] to [ADP] ratio thus determine channel activity. Multiple mutations in Kir6.x and SUR genes have implicated K(ATP) channels in various diseases ranging from diabetes and hyperinsulinism to cardiac arrhythmias and cardiovascular disease. Continuing studies of channel physiology and pathology will bring new insights to the molecular basis of K(ATP) channel function, leading to a better understanding of the role that K(ATP) channels play in both health and disease.


Assuntos
Trifosfato de Adenosina/fisiologia , Doença , Saúde , Canais KATP , Biologia Molecular , Transportadores de Cassetes de Ligação de ATP/genética , Difosfato de Adenosina/fisiologia , Animais , Diabetes Mellitus/genética , Humanos , Hiperinsulinismo/genética , Canais KATP/química , Canais KATP/genética , Canais KATP/metabolismo , Canais KATP/fisiologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Droga/genética , Receptores de Sulfonilureias
13.
Am J Physiol Renal Physiol ; 294(6): F1422-32, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18367661

RESUMO

The human proton/oligopeptide cotransporters hPEPT1 and hPEPT2 have been targeted to enhance the bioavailability of drugs and prodrugs. Previously, we established the mechanisms of drug transport by hPEPT1. Here, we extend these studies to hPEPT2. Major variants hPEPT2*1 and hPEPT2*2 were expressed in Xenopus oocytes, and each was examined using radiotracer uptake and electrophysiological methods. Glycylsarcosine (Gly-Sar); the beta-lactam antibiotics ampicillin, amoxicillin, cephalexin, and cefadroxil; and the anti-neoplastics delta-aminolevulinic acid (delta-ALA) and bestatin induced inward currents, indicating that they are transported. Variations in transport rate were due to differences in affinity and in turnover rate: for example, cefadroxil was transported with higher apparent affinity but at a lower maximum velocity than Gly-Sar. Transport rates were highest at pH 5 and decreased significantly as the external pH was increased. Our results strongly suggest that the protein does not operate as a cotransporter in tissues where there is little or no pH gradient, such as choroid plexus, lung, or mammary gland. In the absence of substrates, rapid voltage jumps produced hPEPT2 capacitive currents at pH 7. These transients were significantly reduced at pH 5 but recovered on addition of substrates. The seven-state ordered kinetic model previously proposed for hPEPT1 accounts for the steady-state kinetics of neutral drug and dipeptide transport by hPEPT2. The model also explains the capacitive transients, the striking difference in pre-steady-state behavior between hPEPT2 and hPEPT1, and differences in turnover numbers for Gly-Sar and cefadroxil. No functional differences were found between the common variants hPEPT2*1 and hPEPT2*2.


Assuntos
Antibacterianos/farmacocinética , Cefadroxila/farmacocinética , Dipeptídeos/farmacocinética , Oligopeptídeos/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Ácido Aminolevulínico/farmacocinética , Animais , Antineoplásicos/farmacocinética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Cinética , Potenciais da Membrana/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Oócitos/fisiologia , Transportador 1 de Peptídeos , Polimorfismo Genético , Estrutura Terciária de Proteína , Prótons , Simportadores/química , Simportadores/genética , Trítio , Xenopus laevis
14.
J Physiol ; 574(Pt 1): 149-66, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16627568

RESUMO

The human intestinal proton-coupled oligopeptide transporter hPEPT1 has been implicated in the absorption of pharmacologically active compounds. We have investigated the interactions between a comprehensive selection of drugs, and wild-type and variant hPEPT1s expressed in Xenopus oocytes, using radiotracer uptake and electrophysiological methods. The beta-lactam antibiotics ampicillin, amoxicillin, cephalexin and cefadroxil, the antineoplastics delta-aminolevulinic acid (delta-ALA) and bestatin, and the neuropeptide N-acetyl-Asp-Glu (NAAG), were transported, as judged by their ability to evoke inward currents. When the drugs were added in the presence of the typical substrate glycylsarcosine (Gly-Sar), the inward currents were equal or less than that induced by Gly-Sar alone. This suggests that the drugs are transported at a lower turnover rate than Gly-Sar, but may also point towards complex interactions between dipeptides, drugs and the transporter. Gly-Sar and the drugs also modified the kinetics of hPEPT1 presteady-state charge movement, by causing a reduction in maximum charge (Qmax) and a shift of the midpoint voltage (V0.5) to more negative potentials. Our results indicate that the substrate selectivity of hPEPT1 is: Gly-Sar > NAAG, delta-ALA, bestatin > cefadroxil, cephalexin > ampicillin, amoxicillin. Based on steady-state and presteady-state analysis of Gly-Sar and cefadroxil transport, we proposed an extension of the 6-state kinetic model for hPEPT1 function that globally accounts for the observed presteady-state and steady-state kinetics of neutral dipeptide and drug transport. Our model suggests that, under saturating conditions, the rate-limiting step of the hPEPT1 transport cycle is the reorientation of the empty carrier within the membrane. Variations in rates of drug cotransport are predicted to be due to differences in affinity and turnover rate. Oral availability of drugs may be reduced in the presence of physiological concentrations of dietary dipeptides in the gut, suggesting that oral delivery drugs should be taken on an empty stomach. The common hPEPT1 single-nucleotide polymorphisms Ser117Asn and Gly419Ala retained the essential kinetic and drug recognition characteristics of the wild type, suggesting that neither variant is likely to have a major impact on oral absorption of drugs.


Assuntos
Antineoplásicos/metabolismo , Dipeptídeos/metabolismo , Modelos Biológicos , Oócitos/metabolismo , Simportadores/química , Simportadores/metabolismo , beta-Lactamas/metabolismo , Animais , Antineoplásicos/química , Sítios de Ligação , Células Cultivadas , Simulação por Computador , Dipeptídeos/química , Humanos , Ativação do Canal Iônico/fisiologia , Modelos Químicos , Transportador 1 de Peptídeos , Ligação Proteica , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade , Xenopus laevis , beta-Lactamas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA