Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399404

RESUMO

Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved in cancer development and progression. This suggests that they may be more effective in treating cancer than drugs that target a single pathway. Cell viability was measured using the MTT assay. The expression of genes related to inflammation (TNFa, IL1b, COX-1, COX-2, and 5-LOX) was measured in HepG2, MCF7, and THLE-2 cells using qPCR. The levels of TNFα, IL1b, COX-1, COX-2, and 5-LOX were also measured in these cells using an ELISA kit. An enzyme binding assay revealed that sulfadiazine expressed weaker inhibitory activity against COX-2 (IC50 = 5.27 µM) in comparison with the COX-2 selective reference inhibitor celecoxib (COX-2 IC50 = 1.94 µM). However, a more balanced inhibitory effect was revealed for sulfadiazine against the COX/LOX pathway with greater affinity towards 5-LOX (IC50 = 19.1 µM) versus COX-1 (IC50 = 18.4 µM) as compared to celecoxib (5-LOX IC50 = 16.7 µM, and COX-1 IC50 = 5.9 µM). MTT assays revealed the IC50 values of 245.69 ± 4.1 µM and 215.68 ± 3.8 µM on HepG2 and MCF7 cell lines, respectively, compared to the standard drug cisplatin (66.92 ± 1.8 µM and 46.83 ± 1.3 µM, respectively). The anti-inflammatory effect of sulfadiazine was also depicted through its effect on the levels of inflammatory markers and inflammation-related genes (TNFα, IL1b, COX-1, COX-2, 5-LOX). Molecular simulation studies revealed key binding interactions that explain the difference in the activity profiles of sulfadiazine compared to celecoxib. The results suggest that sulfadiazine exhibited balanced inhibitory activity against the 5-LOX/COX-1 enzymes compared to the selective COX-2 inhibitor, celecoxib. These findings highlight the potential of sulfadiazine as a potential anticancer agent through balanced inhibitory activity against the COX/LOX pathway and reduction in the expression of inflammatory genes.

2.
Drug Dev Res ; 85(1): e22127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877739

RESUMO

Estrogen receptor is an important target in breast cancer. Serotonin receptors (5-HT2A and 5-HT2C , in particular) were investigated for a potential role in development and progression of breast cancer. Ligands that interact with estrogenic receptors influence the emotional state of females. Thus, designing selective estrogen receptor modulator (SERM) analogs with potential serotonergic activity is a plausible approach. The dual ligands can augment cytotoxic effect of SERMs, help in both physical and emotional menopausal symptom relief, enhance cognitive function and support bone health. Herein, we report triarylethylene analogs as potential candidates for treatment of breast cancer. Compound 2e showed (ERα relative ß- galactosidase activity = 0.70), 5-HT2A (Ki = 0.97 µM), and 5-HT2C (Ki = 3.86 µM). It was more potent on both MCF-7 (GI50 = 0.27 µM) and on MDA-MB-231 (GI50 = 1.86 µM) compared to tamoxifen (TAM). Compound 4e showed 40 times higher antiproliferative activity on MCF-7 and 15 times on MDA-MBA compared to TAM. Compound 4e had higher average potency than TAM on all nine tested cell line panels. Our in-silico model revealed the binding interactions of compounds 2 and 2e in the three receptors; further structural modifications are suggested to optimize binding to the ERα, 5-HT2A , and 5-HT2C .


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Feminino , Humanos , Receptor alfa de Estrogênio/metabolismo , Serotonina , Tamoxifeno , Antagonistas de Estrogênios , Neoplasias da Mama/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptores de Estrogênio/metabolismo
3.
J Enzyme Inhib Med Chem ; 38(1): 203-215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36382444

RESUMO

The present study aimed to investigate the antitumor effect of simultaneous inhibition of dihydrofolate reductase (DHFR) enzyme. We designed some novel pyrazolo[3,4-d]pyrimidines bearing different amino acid conjugates as efficient antifolate agents attributable to their structural similarity with methotrexate (MTX) and MTX-related antifolates. All compounds were tested to screen their enzymatic inhibition against DHFR compared with the reference drug MTX and for their in vitro antitumor cytotoxicity against six MTX-resistant cancer cell lines. The flow cytometry indicated that the most potent compound 7f arrested MCF-7 cells in the S-phase and induced apoptosis. Western blot for visualisation proved the ability of compound 7f to induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to diminish the expression of antiapoptotic Bcl-2 protein. Molecular modelling studies concluded that compound 7f displayed better binding energy than that of the normal ligand MTX. HIGHLIGHTSNew pyrazolo[3,4-d]pyrimidine derivatives 7a-m which are structurally similar to the classical methotrexate (MTX) and MTX-related antifolates were synthesised as antitumor agents.Novel N-acyl amino acid compound 7f exhibited marked DHFR inhibition activity that are parralel to both the molecular docking results and cytotoxic activity.Compound 7f could induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to diminish the expression of antiapoptotic Bcl-2 protein.All prepared compounds obey Lipinski rule of five except compound 7f.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antagonistas do Ácido Fólico , Humanos , Feminino , Pirimidinas/química , Proteína X Associada a bcl-2 , Metotrexato/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Aminoácidos , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo
4.
Bioorg Chem ; 129: 106207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270170

RESUMO

A new series of pyrazolo[3,4-d]pyrimidine analogues bearing different amino acid conjugates 10a-m were synthesized with the aim to evaluate their antitumor effect through simultaneous inhibition of human dihydrofolate reductase (hDHFR). All novel compounds were tested to screen their enzyme inhibition activity against (hDHFR) beside their in vitro cytotoxicity against six human MTX resistant cancer cell lines namely, human prostate cancer (PC-3), pancreatic human cancer cell lines (BxPC-3), colorectal carcinoma (HCT-116), human hepatocellular carcinoma (HepG-2), cervical carcinoma (HeLa), and mammary gland breast cancer (MCF-7), besides normal immortalized pancreatic cell line (HPDE). Compounds 10e, 10f, 10g inhibited DHFR at considerable low (IC50 < 1 µM) in comparison to MTX (IC50 = 5.61 µM) beside their characteristic cytotoxic effects on different resistant cancer cell lines. Flow cytometry was done for the most active candidate compound 10e against MCF-7 breast cancer cell line. The results illustrated that compound 10e induced apoptosis and arrested MCF-7 cell cycle in the G1/S phase. Western blot for visualization and quantification was used to confirm the capability of compound 10e to induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to reduce the expression of antiapoptotic Bcl-2 protein. Molecular modeling studies demonstrated that compound 10e elucidated binding energy of (S= - 8.4390 Kcal/mol) that exceed that of the normal ligand MTX (S= - 8.3951Kcal/mol) in addition to several favorable binding interactions with the active site residues.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Pirazóis , Pirimidinas , Tetra-Hidrofolato Desidrogenase , Feminino , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia
5.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297358

RESUMO

Breast cancer is a disease in which cells in the breast divide continuously without control. There are great limitations in cancer chemotherapy. Hence, it is essential to search for new cancer therapeutics. Herein, a novel series of EGFR/HER2 dual inhibitors has been designed based on the hybridization of thiazole and pyrazoline fragments. The synthesized compounds were screened for their anti-proliferative activity against MCF-7 breast cancer cell line and MCF-10 normal breast cell line. Interestingly, synthesized compounds 6e and 6k showed very potent antiproliferative activity towards MCF-7 with IC50 values of 7.21 and 8.02 µM, respectively. Furthermore, enzymatic assay was performed against EGFR and HER2 to prove the dual inhibitory action. Compounds 6e and 6k showed potent inhibitory activity for EGFR with IC50 of 0.009 and 0.051 µM, respectively, and for HER2 with IC50 of 0.013 and 0.027 µM, respectively. Additionally, compounds 6e and 6k significantly stimulated apoptotic breast cancer cell death. Compound 6e was further explored for its anticancer activity in vivo using a Xenograft model. Moreover, computational modeling studies, ADMET studies and toxicity prediction were performed to investigate their potential drug candidates.

6.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535550

RESUMO

Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax's pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound's pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound's cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.

7.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961906

RESUMO

The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4-23.7 nM) and have an excellent selectivity profile (SI = 14.5-804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds' structure-activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.

8.
Med Chem ; 8(3): 372-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22530888

RESUMO

Taking advantage of our in-house experimental data on 3-cyano-2-imino-1, 2-dihydropyridine and 3-cyano-2- oxo-1,2-dihydropyridine derivatives as inhibitors of the growth of the human HT-29 colon adenocarcinoma tumor cell line, we have established a highly significant CoMFA and CoMSIA models (q2cv=0.70/0.639). The models were investigated to assure their stability and predictivity (r2pred=0.65/0.61) and successfully applied to design two new potential cell growth inhibitory agents with IC50s in the submicromolar range.


Assuntos
Antineoplásicos/farmacologia , Di-Hidropiridinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Estereoisomerismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA