Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 584: 216670, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307748

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor. After publication, the Editors were contacted by a concerned reader regarding alleged image duplication. These allegations are in regard to Fig. 3a being duplicated from a previously published paper in the journal Stem Cells (Stem Cells. 2008 Sep;26 (9):2332-8. doi: 10.1634/stemcells.2008-0084) and Fig. 8a being duplicated from a previously published paper in the journal Molecular Cancer (Mol Cancer 13, 255 (2014). https://doi.org/10.1186/1476-4598-13-255). After a thorough investigation by the editorial team, the Editors determined that there are multiple identical details between Fig. 5A (Cancer Letters) and Fig. 3A (Stem Cells) and the authors did not produce satisfactory evidence that the published images in Cancer Letters were original. Due to this, the Editor does not have confidence in the results and conclusions presented and has made the decision to retract.

2.
Front Oncol ; 12: 1014949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591473

RESUMO

Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.

3.
Avicenna J Med Biotechnol ; 13(1): 2-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680367

RESUMO

BACKGROUND: The application of non-viral systems for delivering genes to cells is becoming a very interesting issue, especially in the treatment of neoplasms such as Breast Cancer (BC). Polymer-based non-viral systems are safe and feasible gene carriers to be used in targeted cancer therapy. SALL4 gene encodes a transcription factor and is overexpressed in some cancers. METHODS: In this study, carboxyalkylated-PEI25 (25 kDa) was used to deliver plasmids expressing SALL4-siRNA into MCF-7 cells. DLS and AFM were applied to determine the size of nanoparticles. The MTT method was used to assess cytotoxicity, and the efficiency of transfection was confirmed both qualitatively and quantitatively. Finally, the effect of silencing SALL4 was investigated on the migration of MCF7 cells using the scratch test. RESULTS: The results showed that transferring the SALL4-siRNA using PEI25G10C50 reduced the expression of the corresponding transcription factor by 14 folds which attenuated the migration of MCF-7 cells by 58%. CONCLUSION: In conclusion, PEI25G10C50 can serve as an effective gene delivery system for treating BC by targeting SALL-4.

4.
J Chem Neuroanat ; 110: 101870, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038437

RESUMO

Spinal cord injury (SCI) as a crippling disability causes tissue degeneration via neuron loss and fiber disruption. Some researchers have tried to reverse or minimize these changes. Platelet-rich plasma (PRP) is a biological product derived from peripheral blood containing a variety of growth factors. PRP has been extensively used in regenerative medicine. On the other hand, via secreting neuroprotective growth factors, mesenchymal stem cells (MSCs) have shown a promising potential in repairing central nervous system deficits. This study investigated the therapeutic effect of the combined use of MSCs and PRP in a rat model of SCI. We used real time-PCR method for evaluation of Bcl-2, Bax and caspase 3 expressions, TUNEL test for apoptotic cell death assessment, and neurofilament NF200 immunohistochemistry for examination of axonal regeneration. The results showed that co-treatment with MSCs and PRP efficiently alleviated the evaluated categories. Significant differences were observed in expression of Bcl-2 and caspase3, but not Bax, apoptotic index and the number of NF200 positive axons (for all P ≤ 0.01) between co-treatment animals compared with those treated with only MSCs or PRP. In conclusion, this study showed that combination of MSCs and PRP synergistically promotes their therapeutic effects in the SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Terapia Combinada , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
5.
Crit Rev Eukaryot Gene Expr ; 29(2): 127-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679268

RESUMO

Prostate cancer is the most prevalent nonskin cancer and a major cause of cancer-related deaths worldwide. Prostate-specific antigen (PSA) testing is routinely used for screening and early detection of prostate cancer; however, it does not reduce death from prostate cancer. Moreover, PSA is not specific for prostate cancer and results in high false-positive rates, and it is poorly correlated with cancer stage. Therefore, the need for another diagnostic and prognostic factor in prostate cancer is apparent. MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs which are involved in modulation of gene expression posttranscriptionally. Multiple lines of evidence indicate that miRNAs play key roles in various physiological events. Deregulation of miRNAs is related to initiation and development of various diseases such as prostate cancer. It has been shown that various miRNAs (miR-34, miR-21, miR-155, miR-221, miR-222, and let-7) exert their effects by targeting a variety of cellular and molecular pathways (c-Myc, EZH2, c-RSC, BCL2L2, E2F6, ZEB, HMGA251, and CCND2) involved in prostate cancer pathogenesis. Hence, it seems that miRNA expression profiles can be seen as potential candidates for prognosis, diagnosis, and treatment of prostate cancer. Here, we summarize various miRNAs as prognostic, diagnostic, and therapeutic biomarkers for prostate cancer therapy.


Assuntos
Biomarcadores Tumorais/sangue , MicroRNAs/sangue , Neoplasias da Próstata/diagnóstico , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/terapia , Transcriptoma
6.
Artif Cells Nanomed Biotechnol ; 47(1): 3058-3066, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31339375

RESUMO

Repairing the lost or damaged mandible is very difficult and time-consuming, so there is a great hope for tissue engineering to accelerate it. At the present study, electrospinning was applied to fabricate polyvinylidene fluoride (PVDF) and PVDF-polyaniline (PANI) composite scaffolds. In addition, extremely low frequency pulsed electromagnetic field (PEMF) was applied for treating the stem cells derived from dental pulp (DPSCs) when cultured on the nanofibrous scaffolds. Osteoinductive property of the fabricated PVDF, PVDF-PANI scaffold at the presence and absence of the PEMF was investigated by evaluating the common osteogenic differentiation markers in seeded-DPSCs on the scaffold. Results demonstrated that cell attachment, protein adsorption and cells viability were increased when PEMF was applied. In addition, ALP activity, calcium content, osteogenic genes and protein evaluations confirmed that PEMF could significantly increase osteoinductivity of the PVDF while composite with PANI. According to the results, the use of polymers with piezoelectricity and conductivity features plus PEMF exposure has a promising potential to improve the current treatment methods in bone and mandibular defects.


Assuntos
Compostos de Anilina/farmacologia , Diferenciação Celular , Campos Eletromagnéticos , Células-Tronco Mesenquimais/citologia , Osteogênese , Polivinil/química , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Polpa Dentária/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Osteogênese/efeitos dos fármacos , Osteogênese/efeitos da radiação , Resistência à Tração , Engenharia Tecidual
7.
Cancer Cell Int ; 19: 157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198406

RESUMO

Fibromodulin (FMOD) is known as one of very important extracellular matrix small leucine-rich proteoglycans. This small leucine-rich proteoglycan has critical roles in the extracellular matrix organization and necessary for repairing of tissue in many organs. Given that the major task of FMOD is the modulation of collagen fibrillogenesis. However, recently observed that FMOD plays very important roles in the modulation of a variety of pivotal biological processes including angiogenesis, regulation of TGF-ß activity, and differentiation of human fibroblasts into pluripotent cells, inflammatory mechanisms, apoptosis and metastatic related phenotypes. Besides these roles, FMOD has been considered as a new tumor-related antigen in some malignancies such as lymphoma, leukemia, and leiomyoma. Taken together, these findings proposed that FMOD could be introduced as diagnostic and therapeutic biomarkers in treatment of various cancers. Herein, for first time, we highlighted the various roles of FMOD in the cancerous conditions. Moreover, we summarized the diagnostic and therapeutic applications of FMOD in cancer therapy.

8.
J Cell Biochem ; 120(5): 7109-7114, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30485486

RESUMO

One of the most lethal cancers among women is breast cancer. MicroRNAs (miRNAs) can be of great importance in the early detection of breast cancer. This study aimed to investigate some miRNAs in the serum of patients with breast cancer compared with the control group. Total RNA was extracted from the serum of patients with breast cancer and healthy volunteers. The expression levels of miRNAs and the genes were assessed using real-time reverse transcriptase-polymerase chain reaction with specific primers. Our data showed that miR-25 and miR-133 were downregulated, and miR-17 was upregulated in patients with breast cancer. Upregulation of miR-17 is related to the poor survival time and increased cell proliferation. The reduced expression of miR-133 and miR-25 is significantly associated with clinical stage, metastasis, and survival time of patients with breast cancer. Expressions of miRNAs miR-17, miR-25, and miR-133 are altered in patients with clinical stage, metastasis, poor survival time.

9.
J Cell Biochem ; 120(6): 9392-9399, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520112

RESUMO

Breast cancer is the most prevalent cancers worldwide and causes a significant amount of deaths annually. Spalt-like transcription factor 4 is known as a transcription factor, which has an important role in the proliferation of cancerous cells. Small interfering RNA (siRNA) is a short-chain molecule of 20 to 25 nucleotides that protrude on two sides of the 3', two nucleotides. In this study, using a specific sequence of siRNA against the sequence of this gene, its activity is investigated in the cell line of breast cancer. The breast cancer cells (MCF-7) were cultured and then, using a specific anti-sal-like 4 (SALL4) siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and BCL-2 gene were measured using the real-time polymerase chain reaction method. The specific concentration of siRNA IC50 of the SALL4 gene was 40.35 nmole. Gene expression results indicated that the expression of the Bcl-2 gene in the siRNA group was significantly reduced ( P < 0.05). SiRNA can increase the apoptosis of breast cancer cells by reducing the gene expression of SALL4 gene and Bcl-2; it can be used as a novel targeted therapy. This strategy, in addition to increasing the specificity of the drug, also reduces the side effects when compared with conventional chemotherapy.


Assuntos
Apoptose/genética , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores de Transcrição/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Células MCF-7 , RNA Interferente Pequeno/genética , Transfecção
10.
J Cell Biochem ; 119(11): 8723-8736, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074262

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is associated with impairments of memory, thinking, language, and reasoning. Despite extensive research aiming at the treatment of AD, durable and complete remissions are rare. Hence, new therapeutic approaches are required. Among various therapeutic approaches, stem cells (ie, neural stem cells, mesenchymal stem cells, and embryonic stem cells) and delivery of protective genes such as encoding nerve growth factor, APOE, and glial cell-derived neurotrophic factor have generated promise in AD therapy. Here, we summarized a variety of effective therapeutic approaches (ie, stem cells, and genes) in AD therapy.


Assuntos
Doença de Alzheimer/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Apolipoproteínas E/genética , Células-Tronco Embrionárias/transplante , Técnicas de Transferência de Genes , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Fator de Crescimento Neural/genética , Células-Tronco Neurais/transplante
11.
J Cell Biochem ; 119(11): 8694-8712, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30132957

RESUMO

Metastasis is known to be one of the important factors associated with cancer-related deaths worldwide. Several cellular and molecular targets are involved in the metastasis process. Among these targets, matrix metalloproteinases (MMPs) play central roles in promoting cancer metastasis. MMPs could contribute toward tumor growth, angiogenesis, migration, and invasion via degradation of the extracellular matrix and activation of pre-pro-growth factors. Therefore, identification of various cellular and molecular pathways that affect MMPs could contribute toward a better understanding of the metastatic pathways involved in various tumors. Micro-RNAs are important targets that could affect MMPs. Multiple lines of evidence have indicated that deregulation of various micro-RNAs, including miR-9, Let-7, miR-10b, and miR-15b, affects metastasis of tumor cells via targeting MMPs.


Assuntos
Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Metaloproteinases da Matriz Secretadas/metabolismo , MicroRNAs/metabolismo , Metástase Neoplásica/fisiopatologia , Neoplasias/enzimologia , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Matriz Extracelular/enzimologia , Humanos , Neoplasias/patologia
12.
Mar Biotechnol (NY) ; 20(6): 718-728, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30039186

RESUMO

Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Smegmamorpha/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/efeitos adversos , Staphylococcus epidermidis/efeitos dos fármacos
13.
J Cell Biochem ; 119(10): 7898-7904, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923222

RESUMO

Curcumin is a yellow-orange powder derived from the Curcuma longa plant. Curcumin has been used extensively in traditional medicine for centuries. This component is non-toxic and shown different therapeutic properties such as anti-inflammatory, anti-cancer, antiviral, anti-bacterial, anti-fungal, anti-parasites, and anti-oxidant. Hepatitis B virus (HBV) is a small DNA member of the genus Orthohepadnavirus (Hepadnaviridae family) which is a highly contagious blood-borne viral pathogen. HBV infection is a major public health problem with 2 billion people infected throughout the world and 350 million suffering from chronic HBV infection. Increasing evidence indicated that curcumin as a natural product could be employed in the treatment of HBV patients. It has been showed that curcumin exerts its therapeutic effects on HBV patients via targeting a variety of cellular and molecular pathways such as Wnt/ß-catenin, Ap1, STAT3, MAPK, and NF-κB signaling. Here, we summarized the therapeutic effects of curcumin on patients who infected with HBV. Moreover, we highlighted main signaling pathways (eg, NF-κB, AP1, and Wnt/ß-catenin signaling) which affected by curcumin in HBV infections.


Assuntos
Curcumina/uso terapêutico , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/patogenicidade , Humanos , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
14.
Cancer Lett ; 419: 30-39, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29331419

RESUMO

Interferon γ-induced protein 10 kDa (IP-10) is a potent chemoattractant and has been suggested to enhance antitumor activity and mediate tumor regression through multiple mechanisms of action. Multiple lines of evidence have indicated that genetically-modified adult stem cells represent a potential source for cell-based cancer therapy. In the current study, we assessed therapeutic potential of human adipose derived mesenchymal stem cells (hADSC) genetically-modified to express IP-10 for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A Piggybac vector encoding IP-10 was employed to transfect hADSC ex vivo. Expression and bioactivity of the transgenic protein from hADSCs expressing IP-10 were confirmed prior to in vivo studies. Our results indicated that hADSCs expressing IP-10 could inhibit the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis, TUNEL assay and western blot analysis indicated that hADSCs expressing IP-10 inhibited tumor cell growth, hindered tumor infiltration of Tregs, restricted angiogenesis and significantly prolonged survival. In conclusion, our results demonstrated that targeting metastatic tumor sites by hADSC expressing IP-10 could reduce melanoma tumor growth and lung metastasis.


Assuntos
Quimiocina CXCL10/metabolismo , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Adulto , Animais , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Quimiocina CXCL10/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/genética , Melanoma Experimental/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Adulto Jovem
15.
J Cell Physiol ; 233(5): 3831-3845, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28703313

RESUMO

One of the important strategies for the treatment of cancer is gene therapy which has the potential to exclusively eradicate malignant cells, without any damage to the normal tissues. Gene-directed enzyme prodrug therapy (GDEPT) is a two-step gene therapy approach, where a suicide gene is directed to tumor cells. The gene encodes an enzyme that expressed intracellularly where it is able to convert a prodrug into cytotoxic metabolites. Various delivery systems have been developed to achieve the appropriate levels of tumor restricted expression of chemotherapeutic drugs. Nowadays, mesenchymal stem cells (MSCs) have been drawing great attention as cellular vehicles for gene delivery systems. Inherent characteristics of MSCs make them particularly attractive gene therapy tools in cell therapy. They have been used largely for their remarkable homing property toward tumor sites and availability from many different adult tissues and show anti-inflammatory actions in some cases. They do not stimulate proliferative responses of lymphocytes, suggests that MSCs have low immunogenicity and could avoid immune rejection. This review summarizes the current state of knowledge about genetically modified MSCs that enable to co-transduce a variety of therapeutic agents including suicide genes (i.e., cytosine deaminase, thymidine kinase) in order to exert potent anti-carcinogenesis against various tumors growth. Moreover, we highlighted the role of exosomes released from MSCs as new therapeutic platform for targeting various therapeutic agents.


Assuntos
Marcação de Genes , Terapia Genética , Células-Tronco Mesenquimais/citologia , Neoplasias/terapia , Animais , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Neoplasias/genética
16.
Curr Cancer Drug Targets ; 16(9): 773-788, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26638884

RESUMO

Epigenetic modifications determine phenotypic characteristics in a reversible, stable and genotype-independent manner. Epigenetic modifications mainly encompass CpG island methylation and histone modifications, both being important in the pathogenesis of malignancies. The reversibility of epigenetic phenomenon provides a suitable therapeutic option that is reactivation of epigenetically silenced tumor-suppressor genes. Inhibition of DNA methyltransferase, histone deacetylase and Aurora B kinase, individually or collectively, could feasibly prevent or reverse the impact of epigenetic silencing. MicroRNAs [miRNAs] are an important layer of epigenetic controlling of gene expression, and serve as diagnostic and prognostic biomarkers as well as treatment targets for several types of cancer. miRNAs are involved inepigenetically silencing or activation of genes, tumor suppressor genes and oncogenes, and their modulation opens new horizons for designing novel cancer therapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética , MicroRNAs , Neoplasias/genética , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA