Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1154210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215469

RESUMO

A 9-month-old, female Pomeranian dog presented with vomiting and lethargy. Ultrasonography revealed multilobulated anechoic round shape structures at the ovarian and uterine locations. Through computed tomography scan, an extensive non-contrast multilobulated fluid-filled mass suspected of originating from the walls of the ovary, uterus, urinary bladder and rectum was observed. Ovariohysterectomy and urinary bladder biopsy were performed. Histopathological examination revealed numerous cystic lesions lined by plump cuboidal cells believed to be of epithelial origin. Immunohistochemical staining showed that the cyst-like lesions lining cells were strongly positive for lymphatic vessel endothelial hyaluronan receptor 1. Based on these results, lesions were identified as generalized lymphatic anomaly (GLA), in which lymphangiomas develop in multiple organs. After 6 months follow-up, the size of the cysts remaining in the region of the bladder did not undergo much change. GLA should be included in the differential diagnosis when multiple cystic lesions are interspersed in multiple organs.

2.
Vet Pathol ; 58(5): 766-794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282984

RESUMO

Standardization of tumor assessment lays the foundation for validation of grading systems, permits reproducibility of oncologic studies among investigators, and increases confidence in the significance of study results. Currently, there is minimal methodological standardization for assessing tumors in veterinary medicine, with few attempts to validate published protocols and grading schemes. The current article attempts to address these shortcomings by providing standard guidelines for tumor assessment parameters and protocols for evaluating specific tumor types. More detailed information is available in the Supplemental Files, the intention of which is 2-fold: publication as part of this commentary, but more importantly, these will be available as "living documents" on a website (www.vetcancerprotocols.org), which will be updated as new information is presented in the peer-reviewed literature. Our hope is that veterinary pathologists will agree that this initiative is needed, and will contribute to and utilize this information for routine diagnostic work and oncologic studies. Journal editors and reviewers can utilize checklists to ensure publications include sufficient detail and standardized methods of tumor assessment. To maintain the relevance of the guidelines and protocols, it is critical that the information is periodically updated and revised as new studies are published and validated with the intent of providing a repository of this information. Our hope is that this initiative (a continuation of efforts published in this journal in 2011) will facilitate collaboration and reproducibility between pathologists and institutions, increase case numbers, and strengthen clinical research findings, thus ensuring continued progress in veterinary oncologic pathology and improving patient care.


Assuntos
Neoplasias , Patologia Veterinária , Animais , Neoplasias/diagnóstico , Neoplasias/veterinária , Reprodutibilidade dos Testes
3.
Vet Pathol ; 58(2): 243-257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33371818

RESUMO

Counting mitotic figures (MF) in hematoxylin and eosin-stained histologic sections is an integral part of the diagnostic pathologist's tumor evaluation. The mitotic count (MC) is used alone or as part of a grading scheme for assessment of prognosis and clinical decisions. Determining MCs is subjective, somewhat laborious, and has interobserver variation. Proposals for standardizing this parameter in the veterinary field are limited to terminology (use of the term MC) and area (MC is counted in an area measuring 2.37 mm2). Digital imaging techniques are now commonplace and widely used among veterinary pathologists, and field of view area can be easily calculated with digital imaging software. In addition to standardizing the methods of counting MF, the morphologic characteristics of MF and distinguishing atypical mitotic figures (AMF) versus mitotic-like figures (MLF) need to be defined. This article provides morphologic criteria for MF identification and for distinguishing normal phases of MF from AMF and MLF. Pertinent features of digital microscopy and application of computational pathology (CPATH) methods are discussed. Correct identification of MF will improve MC consistency, reproducibility, and accuracy obtained from manual (glass slide or whole-slide imaging) and CPATH approaches.


Assuntos
Software , Animais , Amarelo de Eosina-(YS) , Hematoxilina , Índice Mitótico/veterinária , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA