Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 20(7): 1674-1683, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466511

RESUMO

BACKGROUND: Factor VIII (FVIII) binding to endogenous von Willebrand factor (VWF) has constrained half-life extension of recombinant FVIII (rFVIII) products for hemophilia A. Efanesoctocog alfa (rFVIIIFc-VWF-XTEN; BIVV001) is a novel fusion protein designed to decouple FVIII from VWF in circulation and maximize half-life prolongation by XTEN® polypeptides and Fc fusion. FVIII, VWF, and platelets interact to achieve normal hemostasis. Thus, bioengineered FVIII replacement products, such as efanesoctocog alfa, require comprehensive assessment of their hemostatic potential. OBJECTIVES: We compared functional clot formation and injury-induced platelet accumulation between efanesoctocog alfa and rFVIII. PATIENTS/METHODS: The hemostatic potential of efanesoctocog alfa and rFVIII were assessed by measuring their dose-dependent effects on in vitro fibrin generation in hemophilic plasma and in vivo injury-induced platelet accumulation using intravital microscopy and repeat saphenous vein laser-induced injuries in hemophilia A mice. RESULTS: Equal concentrations of efanesoctocog alfa or rFVIII (up to 1 IU/ml) added to plasma from patients with hemophilia A elicited similar kinetics for dose-dependent fibrin polymerization between factor products. In the presence of tissue plasminogen activator (tPA), clots formed had similar stability between products. Single intravenous doses (50, 100, or 150 IU/kg) of efanesoctocog alfa or rFVIII shortly before repeat saphenous vein laser-induced injuries increased platelet accumulation over time in a dose-dependent manner in hemophilia A mice. Platelet deposition kinetics were similar between products. CONCLUSIONS: Equivalent doses of efanesoctocog alfa and rFVIII had similar efficacy in promoting fibrin clot formation and injury-induced platelet accumulation. The hemostatic potential of efanesoctocog alfa was indistinguishable from that of rFVIII.


Assuntos
Hemofilia A , Hemostáticos , Animais , Fator VIII/metabolismo , Fibrina , Hemostáticos/uso terapêutico , Humanos , Camundongos , Ativador de Plasminogênio Tecidual/uso terapêutico , Fator de von Willebrand/metabolismo
2.
Blood ; 135(17): 1484-1496, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32078672

RESUMO

Factor VIII (FVIII) replacement products enable comprehensive care in hemophilia A. Treatment goals in severe hemophilia A are expanding beyond low annualized bleed rates to include long-term outcomes associated with high sustained FVIII levels. Endogenous von Willebrand factor (VWF) stabilizes and protects FVIII from degradation and clearance, but it also subjects FVIII to a half-life ceiling of ∼15 to 19 hours. Increasing recombinant FVIII (rFVIII) half-life further is ultimately dependent upon uncoupling rFVIII from endogenous VWF. We have developed a new class of FVIII replacement, rFVIIIFc-VWF-XTEN (BIVV001), that is physically decoupled from endogenous VWF and has enhanced pharmacokinetic properties compared with all previous FVIII products. BIVV001 was bioengineered as a unique fusion protein consisting of a VWF-D'D3 domain fused to rFVIII via immunoglobulin-G1 Fc domains and 2 XTEN polypeptides (Amunix Pharmaceuticals, Inc, Mountain View, CA). Plasma FVIII half-life after BIVV001 administration in mice and monkeys was 25 to 31 hours and 33 to 34 hours, respectively, representing a three- to fourfold increase in FVIII half-life. Our results showed that multifaceted protein engineering, far beyond a few amino acid substitutions, could significantly improve rFVIII pharmacokinetic properties while maintaining hemostatic function. BIVV001 is the first rFVIII with the potential to significantly change the treatment paradigm for severe hemophilia A by providing optimal protection against all bleed types, with less frequent doses. The protein engineering methods described herein can also be applied to other complex proteins.


Assuntos
Fator VIII/metabolismo , Hemofilia A/terapia , Hemorragia/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Fator de von Willebrand/metabolismo , Animais , Fator VIII/genética , Hemofilia A/metabolismo , Hemofilia A/patologia , Hemostasia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Primatas , Fator de von Willebrand/genética
3.
J Thromb Haemost ; 17(7): 1044-1052, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887655

RESUMO

Essentials Non-factor VIII (FVIII) therapies for hemophilia A, such as bispecific antibodies (bsAbs), are in development. Bispecific antibodies are intrinsically different from FVIII and lack many of the same regulatory mechanisms. These differences complicate assignment and interpretation of FVIII-equivalent activity. Inability to assign FVIII equivalence compromises our capacity to assess hemostatic potential of bsAb therapies. BACKGROUND: Activated factor VIII (FVIIIa) mimetic bsAbs aim to enable prophylactic treatment of hemophilia A patients with and without inhibitors. With different mechanisms of action, benchmarking their activity against FVIII to determine efficacious yet safe dosage is difficult. OBJECTIVE: To compare the activities of sequence identical emicizumab (SI-Emi) and another bsAb, BS-027125, to recombinant FVIII (rFVIII) using clinical and nonclinical assays and to evaluate our ability to assign a FVIII-equivalent value to bsAbs and implications thereof. METHODS: Activities of SI-Emi, BS-027125, and rFVIII were measured by one-stage clotting assay, chromogenic factor Xa generation assay, and thrombin generation assay. We also assessed the activity of anti-FIXa and anti-FX bivalent homodimers of each bsAb and probed the effect of different reagents in thrombin generation assay (TGA). RESULTS: The FVIII-like activity of SI-Emi and BS-027125 ranged greatly across each assay, varying both by parameter measured within an assay and by reagents used. Notably, SI-Emi anti-FIXa bivalent homodimer had meaningful activity in several assays, whereas BS-027125 anti-FIXa bivalent homodimer only had activity in the chromogenic assay. Surprisingly, SI-Emi displayed activity in the absence of phospholipids, while BS-027125 had minimal phospholipid-independent activity. CONCLUSIONS: Bispecific antibodies demonstrate little consistency between assays tested here owing to intrinsic differences between FVIII and bsAbs. While some trends are shared, the bsAbs also differ in mechanism. These inconsistencies complicate assignment of FVIII-equivalent values to bsAbs. Ultimately, a deeper mechanistic understanding of bsAbs as well as bsAb-tailored assays are needed to monitor and predict their hemostatic potential and long-term efficacy and safety confidently.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Mimetismo Biológico , Fator VIII/farmacologia , Hematínicos/farmacologia , Hemofilia A/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Equivalência Terapêutica , Testes de Coagulação Sanguínea , Fator VIII/imunologia , Fator Xa/metabolismo , Hemofilia A/sangue , Hemofilia A/diagnóstico , Hemofilia A/imunologia , Humanos , Ressonância de Plasmônio de Superfície , Trombina/metabolismo
4.
Blood Adv ; 2(21): 2904-2916, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30396910

RESUMO

The main complication of replacement therapy with factor in hemophilia A (HemA) is the formation of inhibitors (neutralizing anti-factor VIII [FVIII] antibodies) in ∼30% of severe HemA patients. Because these inhibitors render replacement FVIII treatment essentially ineffective, preventing or eliminating them is of top priority in disease management. The extended half-life recombinant FVIII Fc fusion protein (rFVIIIFc) is an approved therapy for HemA patients. In addition, it has been reported that rFVIIIFc may induce tolerance to FVIII more readily than FVIII alone in HemA patients that have developed inhibitors. Given that the immunoglobulin G1 Fc region has the potential to interact with immune cells expressing Fc receptors (FcRs) and thereby affect the immune response to rFVIII, we investigated how human macrophages, expressing both FcRs and receptors reported to bind FVIII, respond to rFVIIIFc. We show herein that rFVIIIFc, but not rFVIII, uniquely skews macrophages toward an alternatively activated regulatory phenotype. rFVIIIFc initiates signaling events that result in morphological changes, as well as a specific gene expression and metabolic profile that is characteristic of the regulatory type Mox/M2-like macrophages. Further, these changes are dependent on rFVIIIFc-FcR interactions. Our findings elucidate mechanisms of potential immunomodulatory properties of rFVIIIFc.


Assuntos
Fator VIII/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Células Cultivadas , Fator VIII/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Hemofilia A/tratamento farmacológico , Hemofilia A/patologia , Humanos , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Leucócitos Mononucleares/citologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA