Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 11(1): 2030135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186440

RESUMO

Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity. In reporter assays mbsAb-PD-L1×4-1BB exhibited conditional 4-1BB agonist activity that was dependent on simultaneous binding to PD-L1. mbsAb-PD-L1×4-1BB further blocked the PD-L1/PD-1 interaction independently of 4-1BB binding. By combining both mechanisms, mbsAb-PD-L1×4-1BB strongly enhanced T-cell proliferation, cytokine production and antigen-specific cytotoxicity using primary mouse cells in vitro. Furthermore, mbsAb-PD-L1×4-1BB exhibited potent anti-tumor activity in the CT26 and MC38 models in vivo, leading to the rejection of CT26 tumors that were unresponsive to PD-L1 blockade alone. Anti-tumor activity was associated with increased tumor-specific CD8+ T cells and reduced regulatory T cells within the tumor microenvironment and tumor-draining lymph nodes. In immunocompetent tumor-free mice, mbsAb-PD-L1×4-1BB treatment neither induced T-cell infiltration into the liver nor elevated liver enzymes in the blood. Dual targeting of PD-L1 and 4-1BB with a bispecific antibody may therefore address key limitations of first generation 4-1BB-agonistic antibodies, and may provide a novel approach to improve PD-1/PD-L1 checkpoint blockade.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/uso terapêutico , Microambiente Tumoral
2.
Cancer Discov ; 12(5): 1248-1265, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176764

RESUMO

Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule. GEN1046 induced T-cell proliferation, cytokine production, and antigen-specific T-cell-mediated cytotoxicity superior to clinically approved PD-(L)1 antibodies in human T-cell cultures and exerted potent antitumor activity in transplantable mouse tumor models. In dose escalation of the ongoing first-in-human study in heavily pretreated patients with advanced refractory solid tumors (NCT03917381), GEN1046 demonstrated pharmacodynamic immune effects in peripheral blood consistent with its mechanism of action, manageable safety, and early clinical activity [disease control rate: 65.6% (40/61)], including patients resistant to prior PD-(L)1 immunotherapy. SIGNIFICANCE: DuoBody-PD-L1×4-1BB (GEN1046) is a first-in-class bispecific immunotherapy with a manageable safety profile and encouraging preclinical and early clinical activity. With its ability to confer clinical benefit in tumors typically less sensitive to CPIs, GEN1046 may fill a clinical gap in CPI-relapsed or refractory disease or as a combination therapy with CPIs. See related commentary by Li et al., p. 1184. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1 , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Linfócitos T
3.
Int J Toxicol ; 34(4): 355-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26015504

RESUMO

Over the past 30 years, the world of pharmaceutical toxicology has seen an explosion in the area of cytokines. An overview of the many aspects of cytokine safety evaluation currently in progress and evolving strategies for evaluating these important entities was presented at this symposium. Cytokines play a broad role to help the immune system respond to diseases, and drugs which modulate their effect have led to some amazing therapies. Cytokines may be "good" when stimulating the immune system to fight a foreign pathogen or attack tumors. Other "good" cytokine effects include reduction of an immune response, for example interferon ß reduction of neuron inflammation in patients with multiple sclerosis. They may be "bad" when their expression causes inflammatory diseases, such as the role of tumor necrosis factor α in rheumatoid arthritis or asthma and Crohn's disease. Therapeutic modulation of cytokine expression can help the "good" cytokines to generate or quench the immune system and block the "bad" cytokines to prevent damaging inflammatory events. However, care must be exercised, as some antibody therapeutics can cause "ugly" cytokine release which can be deadly. Well-designed toxicology studies should incorporate careful assessment of cytokine modulation that will allow effective therapies to treat unmet needs. This symposium discussed lessons learned in cytokine toxicology using case studies and suggested future directions.


Assuntos
Citocinas/toxicidade , Citocinas/uso terapêutico , Animais , Congressos como Assunto , Citocinas/sangue , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Testes de Toxicidade
4.
Toxicol Pathol ; 38(2): 267-79, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20100840

RESUMO

BMS-645737, an inhibitor of vascular endothelial growth factor (VEGF) receptor-2 and fibroblast growth factor (FGF) receptor-1, has anti-angiogenic activity and was evaluated in nonclinical studies as a treatment for cancer. This article characterizes the BMS-645737-induced clinical, gross, and histologic lesions of incisor teeth in Sprague-Dawley (SD) rats. Rats received 0 800 mg/kg BMS-645737 in a single-dose study or consecutive daily doses of 0 20 mg/kg/day in a 1-month study. The reversibility of these effects was assessed in the 1-month study. White discoloration and fracture of incisors were observed clinically and grossly in the 1-month study. In both studies, dose-dependent histopathologic lesions of incisors were degeneration and/or necrosis of odontoblasts and ameloblasts; decreased mineralization of dentin; inflammation and necrosis of the dental pulp; and edema, congestion, and hemorrhage in the pulp and periodontal tissue adjacent to the enamel organ. Partial recovery was observed at lower doses after a two-week dose-free period in the one-month study. Drug-induced incisor lesions were considered to be related to the pharmacologic inhibitory effects on VEGF and FGF signaling, that is, inhibition of growth and maintenance of small-diameter vessels that support the formation of dentin and enamel in growing teeth and/or to perturbances of function of odontoblasts and ameloblasts or their precursors.


Assuntos
Inibidores da Angiogênese/toxicidade , Incisivo/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Pirróis/toxicidade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Triazinas/toxicidade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Dentina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Incisivo/patologia , Masculino , Necrose , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
5.
Diabetes ; 52(9): 2279-86, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941767

RESUMO

Islet primary nonfunction (PNF) is defined as the loss of islet function after transplantation for reasons other than graft rejection. It is a major obstacle to successful and efficient islet transplantation. DcR3/TR6 is a soluble death decoy receptor belonging to the tumor necrosis factor (TNF) receptor family, and it can block apoptosis mediated by several TNF receptor family members such as Fas and LT beta R. In this study, we used TR6 to protect islets from PNF after transplantation. Untreated isogeneic or allogeneic islet transplantation had PNF incidence of 25 and 26.5%, respectively. Administration of TR6 totally prevented PNF in allogeneic islet transplantation. In vitro experiments showed an increased apoptosis among islets that were treated with FasL and gamma-interferon (IFN-gamma) in combination. TR6 significantly reduced such apoptosis. Functional study showed that insulin release was compromised after FasL and IFN-gamma treatment, and the compromise could be prevented with TR6-Fc. This indicates that TR6 indeed protected beta-cells from damage caused by FasL and IFN-gamma. Further in vivo experiments showed that syngeneic islet transplantation between lpr/lpr and gld/gld mice was significantly more efficacious than that conducted between wild-type mice. These results suggest that Fas-mediated apoptosis plays an important role in PNF, and use of TR6 may be a novel strategy to prevent PNF in clinical islet transplantation.


Assuntos
Sobrevivência de Enxerto/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas , Glicoproteínas de Membrana/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Proteína Ligante Fas , Humanos , Interferon gama/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular , Receptores do Fator de Necrose Tumoral , Membro 6b de Receptores do Fator de Necrose Tumoral , Receptor fas/metabolismo
6.
Blood ; 100(9): 3279-86, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12384428

RESUMO

LIGHT is a tumor necrosis factor (TNF) family member and is expressed on activated T cells. Its known receptors are TR2 and LTbetaR on the cell surface, and TR6/DcR3 in solution. TR6/DcR3 is a secreted protein belonging to the TNF receptor family. It binds to Fas ligand (FasL), LIGHT, and TL1A, all of which are TNF family members. In the present study, we report that solid-phase TR6-Fc costimulated proliferation, lymphokine production, and cytotoxicity of mouse T cells upon T-cell receptor (TCR) ligation. A monoclonal antibody against LIGHT similarly costimulated mouse T cells in their proliferation response to TCR ligation. These data suggest LIGHT, although a ligand, can receive costimulation when expressed on the T-cell surface. Mechanistically, when T cells were activated by TCR and CD28 co-cross-linking, TCR and rafts rapidly formed caps where they colocalized. LIGHT rapidly congregated and colocalized with the aggregated rafts. This provided a molecular base for the signaling machinery of LIGHT to interact with that of TCR. Indeed, LIGHT cross-linking enhanced p44/42 mitogen-activated protein kinase activation after TCR ligation. This study reveals a new function and signaling event of LIGHT.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Proteínas de Membrana/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citotoxicidade Imunológica , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/imunologia , Proteínas de Membrana/imunologia , Camundongos , Agregação de Receptores , Receptores de Superfície Celular/metabolismo , Receptores do Fator de Necrose Tumoral , Membro 6b de Receptores do Fator de Necrose Tumoral , Especificidade da Espécie , Linfócitos T Citotóxicos/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA