Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Med Image Anal ; 92: 103059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104402

RESUMO

Artificial intelligence (AI) has a multitude of applications in cancer research and oncology. However, the training of AI systems is impeded by the limited availability of large datasets due to data protection requirements and other regulatory obstacles. Federated and swarm learning represent possible solutions to this problem by collaboratively training AI models while avoiding data transfer. However, in these decentralized methods, weight updates are still transferred to the aggregation server for merging the models. This leaves the possibility for a breach of data privacy, for example by model inversion or membership inference attacks by untrusted servers. Somewhat-homomorphically-encrypted federated learning (SHEFL) is a solution to this problem because only encrypted weights are transferred, and model updates are performed in the encrypted space. Here, we demonstrate the first successful implementation of SHEFL in a range of clinically relevant tasks in cancer image analysis on multicentric datasets in radiology and histopathology. We show that SHEFL enables the training of AI models which outperform locally trained models and perform on par with models which are centrally trained. In the future, SHEFL can enable multiple institutions to co-train AI models without forsaking data governance and without ever transmitting any decryptable data to untrusted servers.


Assuntos
Neoplasias , Radiologia , Humanos , Inteligência Artificial , Aprendizagem , Neoplasias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
2.
Lancet Digit Health ; 6(1): e33-e43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123254

RESUMO

BACKGROUND: Precise prognosis prediction in patients with colorectal cancer (ie, forecasting survival) is pivotal for individualised treatment and care. Histopathological tissue slides of colorectal cancer specimens contain rich prognostically relevant information. However, existing studies do not have multicentre external validation with real-world sample processing protocols, and algorithms are not yet widely used in clinical routine. METHODS: In this retrospective, multicentre study, we collected tissue samples from four groups of patients with resected colorectal cancer from Australia, Germany, and the USA. We developed and externally validated a deep learning-based prognostic-stratification system for automatic prediction of overall and cancer-specific survival in patients with resected colorectal cancer. We used the model-predicted risk scores to stratify patients into different risk groups and compared survival outcomes between these groups. Additionally, we evaluated the prognostic value of these risk groups after adjusting for established prognostic variables. FINDINGS: We trained and validated our model on a total of 4428 patients. We found that patients could be divided into high-risk and low-risk groups on the basis of the deep learning-based risk score. On the internal test set, the group with a high-risk score had a worse prognosis than the group with a low-risk score, as reflected by a hazard ratio (HR) of 4·50 (95% CI 3·33-6·09) for overall survival and 8·35 (5·06-13·78) for disease-specific survival (DSS). We found consistent performance across three large external test sets. In a test set of 1395 patients, the high-risk group had a lower DSS than the low-risk group, with an HR of 3·08 (2·44-3·89). In two additional test sets, the HRs for DSS were 2·23 (1·23-4·04) and 3·07 (1·78-5·3). We showed that the prognostic value of the deep learning-based risk score is independent of established clinical risk factors. INTERPRETATION: Our findings indicate that attention-based self-supervised deep learning can robustly offer a prognosis on clinical outcomes in patients with colorectal cancer, generalising across different populations and serving as a potentially new prognostic tool in clinical decision making for colorectal cancer management. We release all source codes and trained models under an open-source licence, allowing other researchers to reuse and build upon our work. FUNDING: The German Federal Ministry of Health, the Max-Eder-Programme of German Cancer Aid, the German Federal Ministry of Education and Research, the German Academic Exchange Service, and the EU.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Humanos , Estudos Retrospectivos , Prognóstico , Fatores de Risco , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia
3.
Neurooncol Adv ; 5(1): vdad139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106649

RESUMO

Background: Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. Methods: We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N = 2845 patients. Results: We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q codeletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90, and 0.80 in the training cohort, respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79, and 0.87 for prediction of IDH, ATRX, and 1p19q codeletion, respectively. Conclusions: In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available.

4.
NPJ Breast Cancer ; 9(1): 91, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940649

RESUMO

Breast cancer prognosis and management for both men and women are reliant upon estrogen receptor alpha (ERα) and progesterone receptor (PR) expression to inform therapy. Previous studies have shown that there are sex-specific binding characteristics of ERα and PR in breast cancer and, counterintuitively, ERα expression is more common in male than female breast cancer. We hypothesized that these differences could have morphological manifestations that are undetectable to human observers but could be elucidated computationally. To investigate this, we trained attention-based multiple instance learning prediction models for ERα and PR using H&E-stained images of female breast cancer from the Cancer Genome Atlas (TCGA) (n = 1085) and deployed them on external female (n = 192) and male breast cancer images (n = 245). Both targets were predicted in the internal (AUROC for ERα prediction: 0.86 ± 0.02, p < 0.001; AUROC for PR prediction = 0.76 ± 0.03, p < 0.001) and external female cohorts (AUROC for ERα prediction: 0.78 ± 0.03, p < 0.001; AUROC for PR prediction = 0.80 ± 0.04, p < 0.001) but not the male cohort (AUROC for ERα prediction: 0.66 ± 0.14, p = 0.43; AUROC for PR prediction = 0.63 ± 0.04, p = 0.05). This suggests that subtle morphological differences invisible upon visual inspection may exist between the sexes, supporting previous immunohistochemical, genomic, and transcriptomic analyses.

5.
Radiology ; 307(5): e222223, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278629

RESUMO

Background Deep learning (DL) models can potentially improve prognostication of rectal cancer but have not been systematically assessed. Purpose To develop and validate an MRI DL model for predicting survival in patients with rectal cancer based on segmented tumor volumes from pretreatment T2-weighted MRI scans. Materials and Methods DL models were trained and validated on retrospectively collected MRI scans of patients with rectal cancer diagnosed between August 2003 and April 2021 at two centers. Patients were excluded from the study if there were concurrent malignant neoplasms, prior anticancer treatment, incomplete course of neoadjuvant therapy, or no radical surgery performed. The Harrell C-index was used to determine the best model, which was applied to internal and external test sets. Patients were stratified into high- and low-risk groups based on a fixed cutoff calculated in the training set. A multimodal model was also assessed, which used DL model-computed risk score and pretreatment carcinoembryonic antigen level as input. Results The training set included 507 patients (median age, 56 years [IQR, 46-64 years]; 355 men). In the validation set (n = 218; median age, 55 years [IQR, 47-63 years]; 144 men), the best algorithm reached a C-index of 0.82 for overall survival. The best model reached hazard ratios of 3.0 (95% CI: 1.0, 9.0) in the high-risk group in the internal test set (n = 112; median age, 60 years [IQR, 52-70 years]; 76 men) and 2.3 (95% CI: 1.0, 5.4) in the external test set (n = 58; median age, 57 years [IQR, 50-67 years]; 38 men). The multimodal model further improved the performance, with a C-index of 0.86 and 0.67 for the validation and external test set, respectively. Conclusion A DL model based on preoperative MRI was able to predict survival of patients with rectal cancer. The model could be used as a preoperative risk stratification tool. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Langs in this issue.


Assuntos
Aprendizado Profundo , Neoplasias Retais , Masculino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Imageamento por Ressonância Magnética , Fatores de Risco
6.
NPJ Precis Oncol ; 7(1): 35, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977919

RESUMO

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.

7.
Gastric Cancer ; 26(2): 264-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264524

RESUMO

BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS: On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS: Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Instabilidade de Microssatélites , Biomarcadores Tumorais/genética
8.
Med Image Anal ; 79: 102474, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588568

RESUMO

Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but markedly different approaches perform relative to each other. We implemented and systematically compared six methods in six clinically relevant end-to-end prediction tasks using data from N=2980 patients for training with rigorous external validation. We tested three classical weakly-supervised approaches with convolutional neural networks and vision transformers (ViT) and three MIL-based approaches with and without an additional attention module. Our results empirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we report significant performance differences for clinically relevant tasks of mutation prediction in colorectal, gastric, and bladder cancer. In these mutation prediction tasks, classical weakly-supervised workflows outperformed MIL-based weakly-supervised methods for mutation prediction, which is surprising given their simplicity. This shows that new end-to-end image analysis pipelines in computational pathology should be compared to classical weakly-supervised methods. Also, these findings motivate the development of new methods which combine the elegant assumptions of MIL with the empirically observed higher performance of classical weakly-supervised approaches. We make all source codes publicly available at https://github.com/KatherLab/HIA, allowing easy application of all methods to any similar task.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Benchmarking , Humanos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado
9.
Nat Med ; 28(6): 1232-1239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469069

RESUMO

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias/genética , Coloração e Rotulagem , Reino Unido
10.
J Pathol ; 256(3): 269-281, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34738636

RESUMO

The spread of early-stage (T1 and T2) adenocarcinomas to locoregional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomarkers are imperfect. Here, we used an end-to-end deep learning algorithm to identify risk factors for lymph node metastasis (LNM) status in digitized histopathology slides of the primary CRC and its surrounding tissue. In two large population-based cohorts, we show that this system can predict the presence of more than one LNM in pT2 CRC patients with an area under the receiver operating curve (AUROC) of 0.733 (0.67-0.758) and patients with any LNM with an AUROC of 0.711 (0.597-0.797). Similarly, in pT1 CRC patients, the presence of more than one LNM or any LNM was predictable with an AUROC of 0.733 (0.644-0.778) and 0.567 (0.542-0.597), respectively. Based on these findings, we used the deep learning system to guide human pathology experts towards highly predictive regions for LNM in the whole slide images. This hybrid human observer and deep learning approach identified inflamed adipose tissue as the highest predictive feature for LNM presence. Our study is a first proof of concept that artificial intelligence (AI) systems may be able to discover potentially new biological mechanisms in cancer progression. Our deep learning algorithm is publicly available and can be used for biomarker discovery in any disease setting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Tecido Adiposo/patologia , Neoplasias Colorretais/patologia , Aprendizado Profundo , Diagnóstico por Computador , Detecção Precoce de Câncer , Interpretação de Imagem Assistida por Computador , Linfonodos/patologia , Microscopia , Biópsia , Humanos , Metástase Linfática , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA