Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 86(5): 3030-41, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111417

RESUMO

Reorientation of the regulatory domain of the myosin head is a feature of all current models of force generation in muscle. We have determined the orientation of the myosin regulatory light chain (RLC) using a spin-label bound rigidly and stereospecifically to the single Cys-154 of a mutant skeletal isoform. Labeled RLC was reconstituted into skeletal muscle fibers using a modified method that results in near-stoichiometric levels of RLC and fully functional muscle. Complex electron paramagnetic resonance spectra obtained in rigor necessitated the development of a novel decomposition technique. The strength of this method is that no specific model for a complex orientational distribution was presumed. The global analysis of a series of spectra, from fibers tilted with respect to the magnetic field, revealed two populations: one well-ordered (+/-15 degrees ) with the spin-label z axis parallel to actin, and a second population with a large distribution (+/-60 degrees ). A lack of order in relaxed or nonoverlap fibers demonstrated that regulatory domain ordering was defined by interaction with actin rather than the thick filament surface. No order was observed in the regulatory domain during isometric contraction, consistent with the substantial reorientation that occurs during force generation. For the first time, spin-label orientation has been interpreted in terms of the orientation of a labeled domain. A Monte Carlo conformational search technique was used to determine the orientation of the spin-label with respect to the protein. This in turn allows determination of the absolute orientation of the regulatory domain with respect to the actin axis. The comparison with the electron microscopy reconstructions verified the accuracy of the method; the electron paramagnetic resonance determined that axial orientation was within 10 degrees of the electron microscopy model.


Assuntos
Biofísica/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Músculo Esquelético/metabolismo , Miosinas/química , Actinas/química , Animais , Dicroísmo Circular , Cisteína/química , Elétrons , Eletroforese em Gel de Poliacrilamida , Magnetismo , Modelos Moleculares , Modelos Estatísticos , Fibras Musculares Esqueléticas/metabolismo , Mutação , Cadeias Leves de Miosina/química , Papaína/química , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Músculos Psoas/metabolismo , Coelhos , Espectrofotometria , Propriedades de Superfície
2.
Proc Natl Acad Sci U S A ; 99(20): 12765-70, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12239350

RESUMO

Site-directed spin labeling EPR (SDSL-EPR) was used to determine the structure of the inhibitory region of TnI in the intact cardiac troponin ternary complex. Maeda and collaborators have modeled the inhibitory region of TnI (skeletal 96-112: the structural motif that communicates the Ca(2+) signal to actin) as a kinked alpha-helix [Vassylyev, D., Takeda, S., Wakatsuki, S., Maeda, K. & Maeda, Y. (1998) Proc. Natl. Acad. Sci. USA 95, 4847-4852), whereas Trewhella and collaborators have proposed the same region to be a flexible beta-hairpin [Tung, C. S., Wall, M. E., Gallagher, S. C. & Trewhella, J. (2000) Protein Sci. 9, 1312-1326]. To distinguish between the two models, residues 129-145 of cardiac TnI were mutated sequentially to cysteines and labeled with the extrinsic spin probe, MTSSL. Sequence-dependent solvent accessibility was measured as a change in power saturation of the spin probe in the presence of the relaxation agent. In the ternary complex, the 129-137 region followed a pattern characteristic of a regular 3.6 residues/turn alpha-helix. The following region, residues 138-145, showed no regular pattern in solvent accessibility. Measurements of 4 intradomain distances within the inhibitory sequence, using dipolar EPR, were consistent with an alpha-helical structure. The difference in side-chain mobility between the ternary (C.I.T) and binary (C.I) complexes revealed a region of interaction of TnT located at the N-terminal end of the inhibitory sequence, residues 130-135. The above findings for the troponin complex in solution do not support either of the computational models of the binary complex; however, they are in very good agreement with a preliminary report of the x-ray structure of the cardiac ternary complex [Takeda, S. Yamashita, A., Maeda, K. & Maeda, Y. (2002) Biophys. J. 82, 832].


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Troponina/química , Animais , Bovinos , Modelos Moleculares , Modelos Estatísticos , Mutação , Miocárdio/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
3.
J Magn Reson ; 156(1): 104-12, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12081447

RESUMO

Electron paramagnetic resonance (EPR) is often used in the study of the orientation and dynamics of proteins. However, there are two major obstacles in the interpretation of EPR signals: (a) most spin labels are not fully immobilized by the protein, hence it is difficult to distinguish the mobility of the label with respect to the protein from the reorientation of the protein itself; (b) even in cases where the label is fully immobilized its orientation with respect to the protein is not known, which prevents interpretation of probe reorientation in terms of protein reorientation. We have developed a computational strategy for determining whether or not a spin label is immobilized and, if immobilized, predicting its conformation within the protein. The method uses a Monte Carlo minimization algorithm to search the conformational space of labels within known atomic level structures of proteins. To validate the method a series of spin labels of varying size and geometry were docked to sites on the myosin head catalytic and regulatory domains. The predicted immobilization and conformation compared well with the experimentally determined mobility and orientation of the label. Thus, probes can now be targeted to report on various modes of molecular dynamics: immobilized probes to report on protein backbone and domain dynamics or floppy probes to report on the extent of steric restriction experienced by the side chain.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Método de Monte Carlo , Miosinas/química , Animais , Anisotropia , Galinhas , Modelos Moleculares , Conformação Proteica , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA