Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 11: 266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275906

RESUMO

BACKGROUND: Producing valuable fuels and chemicals from lignin is a key factor for making lignocellulosic biomass economically feasible; however, significant roadblocks exist due to our lack of detailed understanding of how lignin is enzymatically depolymerized and of the range of possible lignin fragments that can be produced. Development of suitable enzymatic assays for characterization of putative lignin active enzymes is an important step towards improving our understanding of the catalytic activities of relevant enzymes. Previously, we have successfully built an assay platform based on glycan substrates containing a charged perfluorinated tag and nanostructure-initiator mass spectrometry to study carbohydrate active enzymes, especially various glycosyl hydrolyses. Here, we extend this approach to develop a reliable and rapid assay to study lignin-modifying enzymes. RESULTS: Two ß-aryl ether bond containing model lignin dimer substrates, designed to be suitable for studying the activities of lignin-modifying enzymes (LMEs) by nanostructure-initiator mass spectrometry (NIMS), were successful synthesized. Small-angle neutron scattering experiments showed that these substrates form micelles in solution. Two LMEs, laccase from the polypore mushroom Trametes versicolor, and manganese peroxidase (MnP) from white rot fungus Nematoloma frowardii, were tested for catalytic activity against the two model substrates. We show that the reaction of laccase and MnP with phenolic substrate yields products that arise from the cleavage of the carbon-carbon single bond between the α-carbon and the adjacent aryl carbon, consistent with the mechanism for producing phenoxy radical as reaction intermediates. Reactions of the nonphenolic substrate with laccase, on the other hand, adopt a different pathway by producing an α-oxidation product; as well as the cleavage of the ß-aryl ether bond. No cleavage of the carbon-carbon bond between the α-carbon and the aryl carbon was observed. To facilitate understanding of reaction kinetics, the reaction time course for laccase activity on the phenolic substrate (I) was generated by the simultaneous measurement of all products at different time points of the reaction. Withdrawal of only a small sample aliquot (0.2 µL at each time point) ensured minimum perturbation of the reaction. The time course can help us to understand the enzyme kinetics. CONCLUSIONS: A new assay procedure has been developed for studying lignin-modifying enzymes by nanostructure-initiator mass spectrometry. Enzyme assays of a laccase and a MnP on phenolic and nonphenolic ß-aryl ether substrates revealed different primary reaction pathways due to the availability of the phenoxy radical intermediates. Our assay provides a wealth of information on bond cleavage events not available using conventional colorimetric assays and can easily be carried out in microliter volumes and the quantitative analysis of product formation and kinetics is rapidly achieved by NIMS. This is the first time that NIMS technology was applied to study the activities of lignin-modifying enzymes. Unlike other previous works, our use of amphiphilic guaiacylglycerol ß-O-4 substrate (I) enables the formation of micelles. This approach helps avoid the re-polymerization of the resulting monomeric product. As a result, our assay can clearly demonstrate the degradation pathways of phenolic guaiacylglycerol ß-O-4 type of molecules with laccase and MnP.

2.
J Biol Chem ; 291(19): 10228-38, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26940872

RESUMO

There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of ß-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. ß-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic ß-aryl ether (ß-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the ß-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Sphingomonadaceae/enzimologia , Catálise , Cristalografia por Raios X , Éteres/metabolismo , Redes e Vias Metabólicas , Modelos Moleculares , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
3.
J Biol Chem ; 291(10): 5234-46, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637355

RESUMO

Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via ß-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent ß-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because ß-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic ß-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Lignina/metabolismo , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Proteobactérias/enzimologia , Especificidade por Substrato
4.
Lab Chip ; 12(16): 2823-31, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22777012

RESUMO

We have developed a microfluidic platform that enables, in one experiment, monitoring of signaling events spanning multiple time-scales and cellular locations through seamless integration of cell culture, stimulation and preparation with downstream analysis. A combination of two single-cell resolution techniques-on-chip multi-color flow cytometry and fluorescence imaging provides multiplexed and orthogonal data on cellular events. Automated, microfluidic operation allows quantitatively- and temporally-precise dosing leading to fine time-resolution and improved reproducibility of measurements. The platform was used to profile the toll-like receptor (TLR4) pathway in macrophages challenged with lipopolysaccharide (LPS)-beginning with TLR4 receptor activation by LPS, through intracellular MAPK signaling, RelA/p65 translocation in real time, to TNF-α cytokine production, all in one small macrophage population (< 5000 cells) while using minute reagent volume (540 nL/condition). The platform is easily adaptable to many cell types including primary cells and provides a generic platform for profiling signaling pathways.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Citometria de Fluxo , Cinética , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Biochemistry ; 49(25): 5278-89, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20507120

RESUMO

A striking feature of the CLIC (chloride intracellular channel) protein family is the ability of its members to convert between a soluble state and an integral membrane channel form. Direct evidence of the structural transition required for the CLIC protein to autonomously insert into the membrane is lacking, largely because of the challenge of probing the conformation of the membrane-bound protein. However, insights into the CLIC transmembrane form can be gained by biophysical methods such as fluorescence resonance energy transfer (FRET) spectroscopy. This approach was used to measure distances from tryptophan 35, located within the CLIC1 putative N-domain transmembrane region, to three native cysteine residues within the C-terminal domain. These distances were computed both in aqueous solution and upon the addition of membrane vesicles. The FRET distances were used as constraints for modeling of a structure for the CLIC1 integral membrane form. The data are suggestive of a large conformational unfolding occurring between the N- and C-domains of CLIC1 upon interaction with the membrane. Consistent with previous findings, the N-terminal domain of CLIC1 is likely to insert into the lipid bilayer, while the C-domain remains in solution on the extravesicular side of the membrane.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cloreto/química , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Humanos , Modelos Moleculares , Ligação Proteica , Espectrometria de Fluorescência , Marcadores de Spin
6.
Protein Sci ; 15(6): 1303-17, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731966

RESUMO

Recent work using chemical cross-linking to define interresidue distance constraints in proteins has shown that these constraints are useful for testing tertiary structural models. We applied this approach to the G-protein-coupled receptor bovine rhodopsin in its native membrane using lysine- and cysteine-targeted bifunctional cross-linking reagents. Cross-linked proteolytic peptides of rhodopsin were identified by combined liquid chromatography and FT-ICR mass spectrometry with automated data-reduction and assignment software. Tandem mass spectrometry was used to verify cross-link assignments and locate the exact sites of cross-link attachment. Cross-links were observed to form between 10 pairs of residues in dark-state rhodopsin. For each pair, cross-linkers with a range of linker lengths were tested to determine an experimental distance-of-closest-approach (DCA) between reactive side-chain atoms. In all, 28 cross-links were identified using seven different cross-linking reagents. Molecular mechanics procedures were applied to published crystal structure data to calculate energetically achievable theoretical DCAs between reactive atoms without altering the position of the protein backbone. Experimentally measured DCAs are generally in good agreement with the theoretical DCAs. However, a cross-link between C316 and K325 in the C-terminal region cannot be rationalized by DCA simulations and suggests that backbone reorientation relative to the crystal coordinates occurs on the timescale of cross-linking reactions. Biochemical and spectroscopic data from other studies have found that the C-terminal region is highly mobile in solution and not fully represented by X-ray crystallography data. Our results show that chemical cross-linking can provide reliable three-dimensional structural information and insight into local conformational dynamics in a membrane protein.


Assuntos
Rodopsina/química , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Cisteína/química , Lisina/química , Espectrometria de Massas , Dados de Sequência Molecular , Conformação Proteica , Rodopsina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Succinimidas/química
7.
Eur Biophys J ; 31(5): 400-8, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12202917

RESUMO

Familial hypertrophic cardiomyopathy is an autosomal dominant genetic disorder caused by mutations in cardiac sarcomeric proteins. One such mutation is a six amino acid duplication of residues 1248-1253 in the C-terminal immunoglobulin domain of cardiac myosin binding protein-C, referred to as Motif X. Motif X binds the myosin rod and titin. Here we investigate the structural and functional alteration in the mutant Motif X protein to understand how sarcomeric dysfunction may occur. The cDNA encoding Motif X was cloned, mutated and expressed as wild-type and mutant proteins in a bacterial expression system. Circular dichroism spectroscopy confirmed that the normal and mutant Motif X exhibited a high beta-content, as predicted for immunoglobulin domains. Thermal denaturation curves showed that Motif X unfolded with at least two structural transitions, with the first transition occurring at 63 degrees C in the wild-type but at 40 degrees C in the mutant, consistent with the mutant being structurally less stable. Sedimentation binding studies with synthetic myosin filaments revealed no significant difference in binding to myosin between the wild-type and the mutant Motif X. Molecular modeling of this duplication mutation onto an homologous IgI structure (telokin) revealed that the duplicated residues lie within the F strand of the immunoglobulin fold, on a surface of Motif X distant from residues previously implicated in myosin binding. Taken together, these data suggest that the Motif X mutation may interfere with other, as yet unidentified, functional interactions.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Modelos Moleculares , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Bovinos , Células Cultivadas , Dicroísmo Circular/métodos , Humanos , Mutagênese Sítio-Dirigida , Mutação , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , Ligação Proteica , Desnaturação Proteica , Sensibilidade e Especificidade , Análise Espectral/métodos , Relação Estrutura-Atividade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA