Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 7277-7295, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405458

RESUMO

In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.

2.
J Cancer ; 14(16): 3023-3027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859809

RESUMO

Notch deregulation has been reported in various types of cancers, including Oral squamous cell carcinomas (OSCCs). The role of Notch1 signaling in oral squamous cell carcinoma (OSCC) remains poorly understood. In this study, NOTCH1 was aberrantly expressed in human oral cancer tissues compared with that in normal marginal tissues and was associated with poor prognosis. The positive Notch 1 expression was significantly associated with poor tumor differentiation status. Kaplan-Meier survival curves revealed that elevated cytoplasmic NOTCH1 expression levels in OSCC patients were associated with poor overall survival. Moreover, multivariate COX proportional hazard models revealed that T N status, AJCC stage histological grade were independent prognostic factors for survival. Our result clearly demonstrates the oncogenic role of Notch1 in oral cancer and Notch1 may be a useful biomarker to target oral cancer patients.

3.
J Cell Mol Med ; 27(20): 3168-3188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37724615

RESUMO

The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.

4.
J Biochem Mol Toxicol ; 37(4): e23309, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645100

RESUMO

Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.


Assuntos
Traumatismos Cardíacos , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Cisplatino/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Citocromos c/metabolismo , Proteína X Associada a bcl-2/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Estresse Oxidativo , Traumatismos Cardíacos/induzido quimicamente , Apoptose
5.
Immunopharmacol Immunotoxicol ; 45(3): 304-316, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36326099

RESUMO

OBJECTIVES: Canagliflozin (CAN), a sodium-glucose co-transporter 2 inhibitor, is an anti-hyperglycemic drug that has been approved to treat diabetes. This study evaluated the beneficial effects of CAN on cerebral cortex intoxication induced by cisplatin (CIS). MATERIALS AND METHODS: Rats were allocated into four groups: normal control, CAN (10 mg/kg, P.O.) for 10 days, CIS (8 mg/kg, i.p.) as a single dose on the 5th day of the experiment, and CAN + CIS group. RESULTS: In comparison with CIS control rats, CAN significantly mitigated CIS-induced cortical changes in rats' behavior in the open field and forced swimming assessment as well as histological structure. Biochemically, CAN administration efficiently decreased lipid peroxidation biomarkers MDA and boosted the antioxidant status via a remarkable increase in the cortical reduced glutathione (GSH) content as well as enzymatic activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase (CAT), and glutathione peroxidase (GPx) mediated by up-regulation of heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptors (PPARγ), and silent information regulator (SIRT1)/forkhead box-O3 (FOXO-3) signals. Additionally, pretreatment with CAN significantly decreased cortical myeloperoxidase (MPO), nitrite (NO2-), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels. At the same time, it elevated the IL-10 level associated with the downregulation of Jun N-terminal kinase (JNK)/activator protein 1 (AP-1), TLR4/inducible nitric oxide synthase (iNOS)/nitric oxide (NO), and Ang II/Ang 1-7 signals. CONCLUSIONS: Due to the potent antioxidant and anti-inflammatory properties of CAN, our findings showed that CAN could be a good candidate for the protection against CIS-induced cortical intoxication in the patient receiving CIS.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Ratos , Antioxidantes/metabolismo , Lesões Encefálicas/tratamento farmacológico , Canagliflozina/farmacologia , Córtex Cerebral/metabolismo , Cisplatino/efeitos adversos , Heme Oxigenase-1 , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo
6.
Saudi J Biol Sci ; 29(5): 3519-3527, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844396

RESUMO

Lung cancer is the most talked about cancer in the world. It is also one of the cancers that currently has a high mortality rate. The aim of our research is to find more effective therapeutic targets and prognostic markers for human lung cancer. First, we download gene expression data from the GEO database. We performed weighted co-expression network analysis on the selected genes, we then constructed scale-free networks and topological overlap matrices, and performed correlation modular analysis with the cancer group. We screened the 200 genes with the highest correlation in the cyan module for functional enrichment analysis and protein interaction network construction, found that most of them focused on cell division, tumor necrosis factor-mediated signaling pathways, cellular redox homeostasis, reactive oxygen species biosynthesis, and other processes, and were related to the cell cycle, apoptosis, HIF-1 signaling pathway, p53 signaling pathway, NF-κB signaling pathway, and several cancer disease pathways are involved. Finally, we used the GEPIA website data to perform survival analysis on some of the genes with GS > 0.6 in the cyan module. CBX3, AHCY, MRPL12, TPGB, TUBG1, KIF11, LRRC59, MRPL17, TMEM106B, ZWINT, TRIP13, and HMMR was identified as an important prognostic factor for lung cancer patients. In summary, we identified 12 mRNAs associated with lung cancer prognosis. Our study contributes to a deeper understanding of the molecular mechanisms of lung cancer and provides new insights into drug use and prognosis.

7.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453243

RESUMO

Raw milk is a significant vehicle for the transmission of different infections. In the present study, we focused on Salmonella enterica from raw milk and its resistance to various antibacterial drugs. Furthermore, we have investigated the antimicrobial and antibiofilm effects of essential oil (EO) obtained from Salvia officinalis L. leaves that were collected from the Aljouf region, Saudi Arabia, against S. enterica. One-dozen strains of S. enterica were found in a batch of a hundred milk samples, and those S. enterica strains were shown to be resistant to several antibiotics, particularly the ß-lactam group of antimicrobial drugs. Against multidrug-resistant S. enterica, the inhibitory zones for EO from S. officinalis leaves were found to be 21 mm in diameter. S. officinalis EO at 5% concentration showed a remarkable in vitro inhibitory activity toward the biofilm growth of different S. enterica isolates. Analysis of EO by GC-MS identified 21 distinct components, accounting for 89.94% of the total oil component. The most prominent compounds were 1,8-cineole (39.18%), ß-caryophyllene (12.8%), and α--terpineol (10.3%). Taken together, our results unequivocally confirm that the S. officinalis EOs exert numerous bioactivities. Thus, the well-deserved attention on S. officinalis EO usage as a food preservative and adjunctive remedy for bacterial food-borne diseases is justified.

8.
Front Immunol ; 13: 821190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386712

RESUMO

Transplanting HIV-1 positive patients with hematopoietic stem cells homozygous for a 32 bp deletion in the chemokine receptor type 5 (CCR5) gene resulted in a loss of detectable HIV-1, suggesting genetically disrupting CCR5 is a promising approach for HIV-1 cure. Targeting the CCR5-locus with CRISPR-Cas9 was shown to decrease the amount of CCR5 expression and HIV-1 susceptibility in vitro as well as in vivo. Still, only the individuals homozygous for the CCR5-Δ32 frameshift mutation confer complete resistance to HIV-1 infection. In this study we introduce a mechanism to target CCR5 and efficiently select for cells with biallelic frameshift insertion, using CRISPR-Cas9 mediated homology directed repair (HDR). We hypothesized that cells harboring two different selectable markers (double positive), each in one allele of the CCR5 locus, would carry a frameshift mutation in both alleles, lack CCR5 expression and resist HIV-1 infection. Inducing double-stranded breaks (DSB) via CRISPR-Cas9 leads to HDR and integration of a donor plasmid. Double-positive cells were selected via fluorescence-activated cell sorting (FACS), and CCR5 was analyzed genetically, phenotypically, and functionally. Targeted and selected populations showed a very high frequency of mutations and a drastic reduction in CCR5 surface expression. Most importantly, double-positive cells displayed potent inhibition to HIV-1 infection. Taken together, we show that targeting cells via CRISPR-Cas9 mediated HDR enables efficient selection of mutant cells that are deficient for CCR5 and highly resistant to HIV-1 infection.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Alelos , Sistemas CRISPR-Cas , Infecções por HIV/genética , Soropositividade para HIV/genética , HIV-1/genética , Humanos , Receptores CCR5/genética , Replicação Viral
9.
Biochem Genet ; 60(2): 543-557, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34302581

RESUMO

The Long non-coding RNA (lncRNA) expression profile data of ten samples including human Mesenchymal Stem Cell (MSC) adipogenic differentiation 0, 3, and 6 days from the GEO database, and then perform gene ID conversion, BLAST comparison, and annotation marking. Finally, group A (treatment group on day 3 of differentiation and control group on day 0 of differentiation) obtained a total of 1180 mRNA and 185 lncRNA; group B (treatment group on day 6 of differentiation and control group on day 0 of differentiation). A total of 1376 mRNA and 206 lncRNA were obtained. Finally, we processed the differential lncRNAs and mRNAs obtained in the two groups, and obtained 113 shared differential lncRNAs to further predict the targeted miRNA, a total of 815 lncRNA-miRNA pairs. The targeted mRNA was further predicted, and the grouped differential mRNAs were combined to obtain 64 differential mRNAs. In the end, we obtained 216 ceRNAs containing 26 lncRNAs, 27 miRNAs and 64 mRNAs. We found that the mRNAs in the ceRNA network were mainly enriched with 45 Gene Ontology (GO) terms, mainly including glucose homeostasis mechanism and insulin stimulation response. 69 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mainly enriched. It mainly includes many pathways related to lipid metabolism such as Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), Rap1, cAMP, mitogen-activated protein kinase (MAPK), Ras, hypoxia inducible factor-1 (HIF-1), PI3K-Akt, insulin signaling and so on. In the end, we identified 216 ceRNA regulatory relationships related to obesity research. Our research provides a clearer direction for understanding the molecular mechanism of obesity, the screening and determination of drug targets biomarkers in the future.


Assuntos
Adipogenia/genética , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Saudi J Biol Sci ; 28(10): 5461-5468, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588856

RESUMO

The use of doxorubicin and epirubicin as chemotherapy agent causes side effects such as liver damage due to oxidative stress by reactive oxygen species (ROS) that cause increased of ALT and AST level as liver parameter. One source of natural antioxidants as ROS neutralizer comes from flavonoid that contain in propolis. Most researchers claim that flavonoid can be used to protect the liver. The aim of this study was to test the hepatoprotective effect of flavonoid in propolis from South Sulawesi against doxorubicin and epirubicin. The experiment included male Sprague dawley rats divided into nine groups. The rats received the microcapsule propolis or the quercetin orally for 15 days. The hepatotoxicity was promoted by injection epirubicin and doxorubicin (i.v.) with a cumulative dose of 9 mg/kg. In this study, total polyphenol and flavonoid tests of propolis have been carried out, there were 1.1% polyphenols and 2.7% flavonoids, the antioxidant activity tests showed IC50 value of 9849 ppm and LCMS/MS tests supported the presence of phenolic compounds in propolis from South Sulawesi. Liver parameter was measured and the results showed that the propolis 200 mg/kg group produced the lowest ALT and had potential protective effect against doxorubicin and epirubicin-induced hepatotoxicity.

11.
Onco Targets Ther ; 14: 609-621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33519209

RESUMO

INTRODUCTION: Quiescent leukemia stem cells (LSCs) play a major role in therapeutic resistance and disease progression of chronic myeloid leukemia (CML). LSCs belong to the primitive population; CD34+CD38-Lin-, which does not distinguish normal hematopoietic stem cells (HSC) from CML LSCs. Because Thomsen-Friedenreich/CD176 antigen is expressed on CD34+ HSC and IL1RAP is tightly correlated to BCR-ABL expression, we sought to increase the specificity towards LSC by using additional biomarkers. METHODS: We evaluated the co-expression of both antigens on CD34+ peripheral blood mononuclear cells (PBMCs) from both healthy volunteers and CML patients, using flow cytometry. Then, we used site-directed mutagenesis to induce knob-in-hole mutations in the human IgG heavy chain and the human lambda light chain to generate the bi-specific antibody (Bis-Ab) TF/RAP that binds both antigens simultaneously. We measured complement-directed cytotoxicity (CDC) in CML samples with the Bis-Ab by flow cytometry. RESULTS: In contrast to healthy volunteers, CML samples displayed a highly significant co-expression of CD176 and IL1RAP. When either a double-positive cell line or CML samples were treated with increasing doses of Bis-Ab, increased binding and CDC was observed indicating co-operative binding of the Bis-Ab as compared to monoclonal antibodies. DISCUSSION: These results show that the bi-specific antibody is capable of targeting IL1RAP+ and CD176+ cell population among CML PBMCs, but not corresponding normal cells in CDC assay. We hereby offer a novel strategy for the depletion of CML stem cells from the bulk population in clinical hematopoietic stem cell transplantation.

12.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011443

RESUMO

The ability of microorganisms to reduce inorganic metals has launched an exciting eco-friendly approach towards developing green nanotechnology. Thus, the synthesis of metal nanoparticles through a biological approach is an important aspect of current nanotechnology. In this study, Streptomyces aizuneusis ATCC 14921 gave the small particle of silver nanoparticles (AgNPs) a size of 38.45 nm, with 1.342 optical density. AgNPs produced by Streptomyces aizuneusis were characterized by means of UV-VIS spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectrum of the aqueous solution containing silver ion showed a peak between 410 to 430. Moreover, the majority of nanoparticles were found to be a spherical shape with variables between 11 to 42 nm, as seen under TEM. The purity of extracted AgNPs was investigated by energy dispersive X-ray analysis (EDXA), and the identification of the possible biomolecules responsible for the reduction of Ag+ ions by the cell filtrate was carried out by Fourier Transform Infrared spectrum (FTIR). High antimicrobial activities were observed by AgNPs at a low concentration of 0.01 ppm, however, no deleterious effect of AgNPs was observed on the development and occurrence of Drosophila melanogaster phenotype. The highest reduction in the viability of the human lung carcinoma and normal cells was attained at 0.2 AgNPs ppm.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Streptomyces/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Relação Dose-Resposta a Droga , Drosophila melanogaster/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Prata/metabolismo , Análise Espectral
13.
J Immunol ; 204(7): 1998-2005, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32144163

RESUMO

Mice have been used as accepted tools for investigating complex human diseases and new drug therapies because of their shared genetics and anatomical characteristics with humans. However, the tissues in mice are different from humans in that human cells have a natural mutation in the α1,3 galactosyltransferase (α1,3GT) gene and lack α-Gal epitopes on glycosylated proteins, whereas mice and other nonprimate mammals express this epitope. The lack of α-Gal epitopes in humans results in the loss of immune tolerance to this epitope and production of abundant natural anti-Gal Abs. These natural anti-Gal Abs can be used as an adjuvant to enhance processing of vaccine epitopes to APCs. However, wild-type mice and all existing humanized mouse models cannot be used to test the efficacy of vaccines expressing α-Gal epitopes because they express α-Gal epitopes and lack anti-Gal Abs. Therefore, in an effort to bridge the gap between the mouse models and humans, we developed a new humanized mouse model that mimics humans in that it lacks α-Gal epitopes and secretes human anti-Gal Abs. The new humanized mouse model (Hu-NSG/α-Galnull) is designed to be used for preclinical evaluations of viral and tumor vaccines based on α-Gal epitopes, human-specific immune responses, xenotransplantation studies, and in vivo biomaterials evaluation. To our knowledge, our new Hu-NSG/α-Galnull is the first available humanized mouse model with such features.


Assuntos
Anticorpos/imunologia , Epitopos/imunologia , Galactosiltransferases/imunologia , alfa-Galactosidase/imunologia , Animais , Vacinas Anticâncer/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante Heterólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA