Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 51, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704453

RESUMO

L-asparaginase is an important therapeutic enzyme that is frequently utilized in the chemotherapy regimens of adults as well as pediatric patients with acute lymphoblastic leukemia. However, a high rate of hypersensitivity with prolonged use has limited its utilization. Stenotrophomonas maltophilia (S. maltophilia) EMCC2297 isolate was reported as a novel and promising source for L- asparaginase. The present study aimed at the production, purification, and characterization of L- asparaginase from S. maltophilia EMCC2297 isolate. The microbial production of L-asparaginase by the test isolate could be increased by pre-exposure to chloramphenicol at 200 µg/ml concentration. S. maltophilia EMCC2297 L-asparaginase could be purified to homogeneity by ammonium sulphate precipitation and the purified form obtained by gel exclusion chromatography showed total activity of 96.4375 IU/ml and specific activity of 36.251 IU/mg protein. SDS-PAGE analysis revealed that the purified form of the enzyme is separated at an apparent molecular weight of 17 KDa. Michaelis-Menten constant analysis showed a Km value of 4.16 × 10- 2 M with L-asparagine as substrate and Vmax of 10.67 IU/ml. The antitumor activity of the purified enzyme was evaluated on different cell lines and revealed low IC50 of 2.2 IU/ml and 2.83 IU/ml for Hepatocellular cancer cell line (HepG-2), human leukemia cancer cell line (K-562), respectively whereas no cytotoxic effect could be detected on normal human lung fibroblast cells (MRC-5). However, mice treated with native L-asparaginase showed lower IgG titre compared to commercial L-asparaginase. This study highlights the promising characteristics of this enzyme making it a valuable candidate for further research and development to be an adduct in cancer chemotherapy.

2.
Ther Deliv ; 14(1): 31-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950853

RESUMO

Pseudomonas aeruginosa exotoxin A-based immunotoxins (PE-ITs) are fusion proteins that harness targeting and toxin moieties. Structural optimizations in PE and targeting moieties were implemented to lower their immunogenicity and alleviate undesirable side effects. PE moiety was engineered to lack its cell-binding domain and T cell epitope regions, whereas single chain (scFv) and disulfide Fv portions (dsFv), nanobodies, and monobodies were utilized as targeting moieties. This review discusses applications of PE-ITs on different types of cancer, structural optimizations to reduce PE-ITs drawbacks, and recent modifications applied for efficient therapeutic delivery. Finally, we draw attention to the possibility of combining radiotherapy, radionuclides, and RGDs with PE-IT to improve overall response rates of IT-based treatments and reduce cancer cell resistance.


Exotoxin A-immunotoxins are proteins that have been used in cancer treatments. The building components of these proteins are very poisonous to both cancer and normal cells. Also, unfavorable body reactions and side effects were seen with their usage. To allow the safe use of these proteins, changes were made in their building components. These changes made them damaging only to cancer cells while being safe to normal non-cancerous cells. This review will talk about the use of exotoxin A-Immunotoxins in different cancer treatments, and how they are created to limit the poisonous effect of their building components to only cancer cells.


Assuntos
Toxinas Bacterianas , Imunotoxinas , Neoplasias , Humanos , Imunotoxinas/uso terapêutico , Imunotoxinas/química , Exotoxinas/uso terapêutico , Exotoxinas/química , Neoplasias/tratamento farmacológico , Pseudomonas aeruginosa , Exotoxina A de Pseudomonas aeruginosa
3.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902422

RESUMO

Inflammasomes have been implicated in the pathogenesis of type 2 diabetes (T2D). However, their expression and functional importance in pancreatic ß-cells remain largely unknown. Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) is a scaffold protein that regulates JNK signaling and is involved in various cellular processes. The precise role of MAPK8IP1 in inflammasome activation in ß-cells has not been defined. To address this gap in knowledge, we performed a set of bioinformatics, molecular, and functional experiments in human islets and INS-1 (832/13) cells. Using RNA-seq expression data, we mapped the expression pattern of proinflammatory and inflammasome-related genes (IRGs) in human pancreatic islets. Expression of MAPK8IP1 in human islets was found to correlate positively with key IRGs, including the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), Gasdermin D (GSDMD) and Apoptosis-associated speck-like protein containing a CARD (ASC), but correlate inversely with Nuclear factor kappa ß1 (NF-κß1), Caspase-1 (CASP-1), Interleukin-18 (IL-18), Interleukin-1ß (IL-1ß) and Interleukin 6 (IL-6). Ablation of Mapk8ip1 by siRNA in INS-1 cells down-regulated the basal expression levels of Nlrp3, NLR family CARD domain containing 4 (Nlrc4), NLR family CARD domain containing 1 (Nlrp1), Casp1, Gsdmd, Il-1ß, Il-18, Il-6, Asc, and Nf-κß1 at the mRNA and/or protein level and decreased palmitic acid (PA)-induced inflammasome activation. Furthermore, Mapk8ip1-silened cells substantially reduced reactive oxygen species (ROS) generation and apoptosis in palmitic acid-stressed INS-1 cells. Nonetheless, silencing of Mapk8ip1 failed to preserve ß-cell function against inflammasome response. Taken together, these findings suggest that MAPK8IP1 is involved in regulating ß-cells by multiple pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Células Secretoras de Insulina , Humanos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Interleucina-6 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Ácido Palmítico , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Secretoras de Insulina/metabolismo
5.
Appl Microbiol Biotechnol ; 107(5-6): 1765-1784, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808279

RESUMO

The ADP-ribosyl transferase activity of P. aeruginosa PE24 moiety expressed by E. coli BL21 (DE3) was assessed on nitrobenzylidene aminoguanidine (NBAG) and in vitro cultured cancer cell lines. Gene encoding PE24 was isolated from P. aeruginosa isolates, cloned into pET22b( +) plasmid, and expressed in E. coli BL21 (DE3) under IPTG induction. Genetic recombination was confirmed by colony PCR, the appearance of insert post digestion of engineered construct, and protein electrophoresis using sodium dodecyl-sulfate polyacrylamide gel (SDS-PAGE). The chemical compound NBAG has been used to confirm PE24 extract ADP-ribosyl transferase action through UV spectroscopy, FTIR, c13-NMR, and HPLC before and after low-dose gamma irradiation (5, 10, 15, 24 Gy). The cytotoxicity of PE24 extract alone and in combination with paclitaxel and low-dose gamma radiation (both 5 Gy and one shot 24 Gy) was assessed on adherent cell lines HEPG2, MCF-7, A375, OEC, and Kasumi-1 cell suspension. Expressed PE24 moiety ADP-ribosylated NBAG as revealed by structural changes depicted by FTIR and NMR, and the surge of new peaks at different retention times from NBAG in HPLC chromatograms. Irradiating recombinant PE24 moiety was associated with a reduction in ADP-ribosylating activity. The PE24 extract IC50 values were < 10 µg/ml with an acceptable R2 value on cancer cell lines and acceptable cell viability at 10 µg/ml on normal OEC. Overall, the synergistic effects were observed upon combining PE24 extract with low-dose paclitaxel demonstrated by the reduction in IC50 whereas antagonistic effects and a rise in IC50 values were recorded after irradiation by low-dose gamma rays. KEY POINTS: • Recombinant PE24 moiety was successfully expressed and biochemically analyzed. • Low-dose gamma radiation and metal ions decreased the recombinant PE24 cytotoxic activity. • Synergism was observed upon combining recombinant PE24 with low-dose paclitaxel.


Assuntos
ADP Ribose Transferases , Pseudomonas aeruginosa , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Pseudomonas aeruginosa/genética , Raios gama , Escherichia coli/genética
6.
Biology (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290316

RESUMO

The most prevalent cause of infectious neonatal diarrhea is Group A rotavirus (RVA). Unfortunately, there is a dearth of data on the incidence of rotavirus-associated infections among Egyptian children. The present study aimed to isolate, propagate, and genotype human rotaviruses circulating among Egyptian children with acute gastroenteritis admitted to two main university pediatric hospitals, Abo El-Reesh and El-Demerdash, over two consecutive winters, 2018-2020. Diarrheal samples (n = 230) were screened for Group A rotavirus RNA using RT-PCR assay. In positive samples (n = 34), multiplex semi-nested PCR was utilized to determine G and P genotypes. Thirty-four (14.8%) of the collected samples tested positive. The genotype distribution revealed that G1P[8] was the predominant rotavirus genotype throughout the current study. All rotavirus-positive fecal samples were passaged twice on human colorectal adenocarcinoma cell line (Caco-2) and rhesus monkey kidney epithelial cell line (MA104). Both cell lines could successfully isolate 14.7% (n = 5 out of 34) of the identified strains; however, Caco-2 cell line was shown to be more efficient than MA104 in promoting the propagation of human rotaviruses identified in Egyptian children's feces.

7.
Crit Rev Microbiol ; 48(1): 42-66, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34265231

RESUMO

Various studies confirmed that bacterial infections contribute to carcinogenesis through the excessive accumulation of reactive oxygen species (ROS) and the expression of toxins that disrupt the cell cycle phases, cellular regulatory mechanisms and stimulate the production of tumorigenic inflammatory mediators. These toxins mimic carcinogens which act upon key cellular targets and result in mutations and genotoxicities. The cyclomodulins are bacterial toxins that incur cell cycle modulating effects rendering the expressing bacterial species of high carcinogenic potentiality. They are either cellular proliferating or cell cycle arrest cyclomodulins. Notably, cyclomodulins expressing bacterial species have been linked to different human carcinomas. For instance, Escherichia coli species producing the colibactin were highly prevalent among colorectal carcinoma patients, CagA+ Helicobacter pylori species were associated with MALT lymphomas and gastric carcinomas and Salmonella species producing CdtB were linked to hepatobiliary carcinomas. These species stimulated the overgrowth of pre-existing carcinomas and induced hyperplasia in in vivo animal models suggesting a role for the cyclomodulins in carcinogenesis. Wherefore, the prevalence and mode of action of these toxins were the focus of many researchers and studies. This review discusses different types of bacterial cyclomodulins highlighting their mode of action and possible role in carcinogenesis.


Assuntos
Infecções Bacterianas , Toxinas Bacterianas , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Antígenos de Bactérias , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Carcinogênese , Infecções por Helicobacter/complicações , Humanos
8.
AMB Express ; 11(1): 173, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936047

RESUMO

This work explores the ADP-ribosyltransferase activity of Pseudomonas (P.) aeruginosa exotoxin A using the guanyl hydrazone derivative, nitrobenzylidine aminoguanidine (NBAG) and the impact of gamma radiation on its efficacy. Unlike the conventional detection methods, NBAG was used as the acceptor of ADP ribose moiety instead of wheat germ extract elongation factor 2. Exotoxin A was extracted from P. aeruginosa clinical isolates and screened for toxA gene using standard PCR. NBAG was synthesized using aminoguanidine bicarbonate and 4-nitrobenzaldehyde and its identity has been confirmed by UV, FTIR, Mass and 13C-NMR spectroscopy. The ADP-ribosyl transferase activity of exotoxin A on NBAG in the presence of Nicotinamide adenine dinucleotide (NAD+) was recorded using UV spectroscopy and HPLC. In vitro ADP-ribosyl transferase activity of exotoxin A protein extract was also explored by monitoring its cytotoxicity on Hep-2 cells using sulforhodamine B cytotoxicity assay. Bacterial broths were irradiated at 5, 10, 15, 24 Gy and exotoxin A protein extract activity were assessed post exposure. Exotoxin A extract exerted an ADP-ribosyltransferase ability which was depicted by the appearance of a new ʎmax after the addition of exotoxin A to NBAG/NAD+ mixture, fragmentation of NAD+ and development of new peaks in HPLC chromatograms. Intracellular enzyme activity was confirmed by the prominent cytotoxic effects of exotoxin A extract on cultured cells. In conclusion, the activity of Exotoxin A can be monitored via its ADP-ribosyltransferase activity and low doses of gamma radiation reduced its activity. Therefore, coupling radiotherapy with exotoxin A in cancer therapy should be carefully monitored.

9.
Curr Microbiol ; 78(2): 544-557, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388934

RESUMO

Colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are cyclomodulins secreted by uropathogenic E. coli. In this study, uropathogenic E. coli expressing colibactin and Cnf 1 was exposed to antibiotics subMICs and gamma radiation to investigate their effects on its cytotoxicity and expression of colibactin. The test isolate was exposed to three subMIC levels of levofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole and ceftriaxone and irradiated with gamma rays at 10 and 24.4 Gy. The cytotoxicity for either antibiotic or gamma rays treated cultures was measured using MTT assay and the expression of colibactin encoding genes was determined by RT-PCR. Treatment with fluoroquinolones nearly abolished the cytotoxicity of E. coli isolate and significantly downregulated clbA gene expression at the tested subMICs (P ≤ 0.05) while trimethoprim/sulfamethoxazole treated cultures exerted significant downregulation of clbA and clbQ genes at 0.5 MIC only (P ≤ 0.05). Ceftriaxone treated cultured exhibited reduction in the cytotoxicity and insignificant effects on expression of clbA, clbQ and clbM genes. On contrast, significant upregulation in the expression of clbA and clbQ genes was observed in irradiated cultures (P ≤ 0.05). Fluoroquinolones reduced both the cytotoxicity of UPEC isolate and colibactin expression at different subMICs while ceftriaxone at subMICs failed to suppress the expression of genotoxin, colibactin, giving an insight to the risks associated upon their choice for UTI treatment. Colibactin expression was enhanced by gamma irradiation at doses resembling these received during pelvic radiotherapy which might contribute to post-radiotherapy complications.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Policetídeos , Escherichia coli Uropatogênica , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Raios gama , Humanos , Proteínas de Transporte de Cátions Orgânicos , Peptídeos , Escherichia coli Uropatogênica/genética
10.
Gut Pathog ; 11: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139264

RESUMO

BACKGROUND: The colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are toxins with cell cycle modulating effects that contribute to tumorgenesis and hyperproliferation. This study aimed to investigate the prevalence and pathologic effects of Cnf 1 and colibactin among hemolytic uropathogenic Escherichia coli (UPEC). The bioinformatics approach incorporated in this study aimed to expand the domain of the in vitro study and explore the prevalence of both toxins among other bacterial species. A total of 125 E. coli isolates were recovered from UTIs patients. The isolates were tested for their hemolytic activity, subjected to tissue culture and PCR assays to detect the phenotypic and genotypic features of both toxins. A rat ascending UTI in vivo model was conducted using isolates expressing or non-expressing Cnf 1 and colibactin (ClbA and ClbQ). The bioinformatics analyses were inferred by Maximum likelihood method and the evolutionary relatedness was deduced by MEGA X. RESULTS: Only 21 (16.8%) out of 125 isolates were hemolytic and 10 of these (47.62%) harbored the toxins encoding genes (cnf 1 +, clbA + and clbQ +). The phenotypic features of both toxins were exhibited by only 7 of the (cnf 1 + clbA + clbQ +) harboring isolates. The severest infections, hyperplastic and genotoxic changes in kidneys and bladders were observed in rats infected with the cnf 1 + clbA + clbQ + isolates. CONCLUSION: Only 33.3% of the hemolytic UPEC isolates exhibited the phenotypic and genotypic features of Cnf 1 and Colibactin. The in vivo animal model results gives an evidence of active Cnf 1 and Colibactin expression and indicates the risks associated with recurrent and chronic UTIs caused by UPEC. The bioinformatics analyses confirmed the predominance of colibactin pks island among Enterobacteriaceae family (92.86%), with the highest occurrence among Escherichia species (53.57%), followed by Klebsiella (28.57%), Citrobacter (7.14%), and Enterobacter species (3.57%). The Cnf 1 is predominant among Escherichia coli (94.05%) and sporadically found among Shigella species (1.08%), Salmonella enterica (0.54%), Yersinia pseudotuberculosis (1.08%), Photobacterium (1.08%), Moritella viscosa (0.54%), and Carnobacterium maltaromaticum (0.54%). A close relatedness was observed between the 54-kb pks island of Escherichia coli, the probiotic Escherichia coli Nissle 1917, Klebsiella aerogenes, Klebsiella pneumoniae and Citrobacter koseri.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA