Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Carbohydr Polym ; 327: 121657, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171678

RESUMO

A multifunctional polysaccharide-based hydrogel was studied as an additive for enhancing microalgae growth. The hydrogel was fabricated by physically and chemically crosslinking renewable ingredients of carboxymethyl cellulose (CMC), arrowroot starch, and activated biochar modified with iron using a bio-crosslinker of oxidized sucrose and a plasticizer of glycerol. The optimum formula for the hydrogel with a high swelling ratio, BET surface area, and electrical conductivity was found to include 1 g starch, 3 g CMC, 1.5 g biochar, 15 mL oxidized sucrose, and 1.5 mL glycerol in 200 mL deionized water. The algal yield and cell concentration after 14 days of growth in a Bold basal medium with an optimum concentration of 2.5 g hydrogel/L increased by 65.7 % and 92.2 %, respectively, compared to those of the control without the hydrogel. However, if the hydrogel concentration in the culture increased to 12.5 g/L, the algal yield was decreased by 67.8 % compared to the control due to oxidative injury. The hydrogel additive could significantly increase the nitrogen but decrease the carbon, hydrogen, and sulfur contents of the microalgae. The algal yield with 2.5 g/L hydrogel additive improved by 13.9 % compared to the algal yield with the same amounts of individual non-crosslinked hydrogel ingredients.


Assuntos
Hidrogéis , Microalgas , Ferro/química , Celulose , Amido , Glicerol , Carboximetilcelulose Sódica/química , Sacarose
2.
Crit Rev Food Sci Nutr ; 62(16): 4449-4464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33491467

RESUMO

Flavonoids are common in the plant kingdom and many of them have shown a wide spectrum of bioactive properties. Hesperetin (Hst), the aglycone form of hesperidin, is a great example, and is the most abundant flavonoid found in Citrus plants. This review aims to provide an overview on the in vitro, in vivo and clinical studies reporting the Hst pharmacological effects and to discuss the bioavailability-related issues. Preclinical studies have shown promising effects on cancer, cardiovascular diseases, carbohydrate dysregulation, bone health, and other pathologies. Clinical studies have supported the Hst promissory effects as cardioprotective and neuroprotective agent. However, further well-designed clinical trials are needed to address the other Hst effects observed in preclinical trials, as well as to a more in-depth understanding of its safety profile.


Assuntos
Citrus , Hesperidina , Antioxidantes/farmacologia , Disponibilidade Biológica , Flavonoides , Hesperidina/farmacologia , Hesperidina/uso terapêutico
3.
Front Pharmacol ; 12: 625386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981219

RESUMO

Nigella is a small genus of the family Ranunculaceae, which includes some popular species due to their culinary and medicinal properties, especially in Eastern Europe, Middle East, Western, and Central Asia. Therefore, this review covers the traditional uses and phytochemical composition of Nigella and, in particular, Nigella sativa. The pharmacological studies reported in vitro, in vivo, and in humans have also been reviewed. One of the main strength of the use of Nigella is that the seeds are rich in the omega-6 fatty acid linoleic acid and provide an extra-source of dietary phytochemicals, including the bioactive thymoquinone, and characteristics saponins, alkaloids, and flavonoids. Among Nigella species, N. sativa L. is the most studied plant from the genus. Due to the phytochemical composition and pharmacological properties, the seed and seed oil from this plant can be considered as good candidates to formulate functional ingredients on the basis of folklore and scientific knowledge. Nonetheless, the main limations are that more studies, especially, clinical trials are required to standardize the results, e.g. to establish active molecules, dosage, chemical profile, long-term effects and impact of cooking/incorporation into foods.

4.
Front Pharmacol ; 12: 600139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045956

RESUMO

The genus Cinnamomum includes a number of plant species largely used as food, food additives and spices for a long time. Different traditional healing systems have used these plants as herbal remedies to cure diverse ailments. The aim of this comprehensive and updated review is to summarize the biodiversity of the genus Cinnamomum, its bioactive compounds, the mechanisms that underlie the pharmacological activities and molecular targets and toxicological safety. All the data in this review have been collected from databases and recent scientific literature including Web of Science, PubMed, ScienceDirect etc. The results showed that the bioactive compounds of Cinnamomum species possess antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer and neuroprotective effects. The preclinical (in vitro/in vivo) studies provided the possible molecular mechanisms of these action. As a novelty, recent clinical studies and toxicological data described in this paper support and confirm the pharmacological importance of the genus Cinnamomum. In conclusion, the obtained results from preclinical studies and clinical trials, as well as reduced side effects provide insights into future research of new drugs based on extracts and bioactive compounds from Cinnamomum plants.

5.
Phytother Res ; 35(7): 3590-3609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666283

RESUMO

Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.


Assuntos
Brassica , Compostos Fitoquímicos , Verduras , Brassica/química , Glucosinolatos , Humanos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Verduras/química
6.
Phytother Res ; 35(7): 3533-3557, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33590924

RESUMO

Oxidative stress is the imbalance between reactive oxygen species (ROS) production, and accumulation and the ability of a biological system to clear these reactive products. This imbalance leads to cell and tissue damage causing several disorders in human body, such as neurodegeneration, metabolic problems, cardiovascular diseases, and cancer. Cucurbitaceae family consists of about 100 genera and 1,000 species of plants including mostly tropical, annual or perennial, monoecious, and dioecious herbs. The plants from Cucurbita species are rich sources of phytochemicals and act as a rich source of antioxidants. The most important phytochemicals present in the cucurbits are cucurbitacins, saponins, carotenoids, phytosterols, and polyphenols. These bioactive phyto-constituents are responsible for the pharmacological effects including antioxidant, antitumor, antidiabetic, hepatoprotective, antimicrobial, anti-obesity, diuretic, anti-ulcer activity, and antigenotoxic. A wide number of in vitro and in vivo studies have ascribed these health-promoting effects of Cucurbita genus. Results of clinical trials suggest that Cucurbita provides health benefits for diabetic patients, patients with benign prostate hyperplasia, infertile women, postmenopausal women, and stress urinary incontinence in women. The intend of the present review is to focus on the protective role of Cucurbita spp. phytochemicals on oxidative stress-related disorders on the basis of preclinical and human studies. The review will also give insights on the in vitro and in vivo antioxidant potential of the Cucurbitaceae family as a whole.


Assuntos
Antioxidantes , Cucurbita , Cucurbitaceae , Compostos Fitoquímicos , Antioxidantes/farmacologia , Cucurbita/química , Cucurbitaceae/química , Humanos , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
7.
Cancer Cell Int ; 21(1): 77, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499881

RESUMO

Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.

8.
Phytother Res ; 35(1): 95-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32789910

RESUMO

Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name "oregano" or "pizza-spice." Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure-activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.


Assuntos
Óleos Voláteis/química , Origanum/química , Compostos Fitoquímicos/química , Humanos
9.
Phytother Res ; 35(5): 2445-2476, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33325585

RESUMO

Astragalus L. is widely distributed throughout the temperate regions of Europe, Asia, and North America. The genus is widely used in folk medicine and in dietary supplements, as well as in cosmetics, teas, coffee, vegetable gums, and as forage for animals. The major phytoconstituents of Astragalus species with beneficial properties are saponins, flavonoids, and polysaccharides. Astragalus extracts and their isolated components exhibited promising in vitro and in vivo biological activities, including antiaging, antiinfective, cytoprotective, antiinflammatory, antioxidant, antitumor, antidiabesity, and immune-enhancing properties. Considering their proven therapeutic potential, the aim of this work is to give a comprehensive summary of the Astragalus spp. and their active components, in an attempt to provide new insight for further clinical development of these xenobiotics. This is the first review that briefly describes their ethnopharmacology, composition, biological, and toxicological properties.

10.
Cancer Cell Int ; 20(1): 560, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33292283

RESUMO

Bladder cancer (BC) is a leading cause of death among urothelial malignancies that more commonly affect male population. Poor prognosis and resistance to chemotherapy are the two most important characteristics of this disease. PI3K/Akt/mTOR signaling pathway has been considered pivotal in the regulation of proliferation, migration, invasiveness, and metastasis. Deregulation of PI3K/Akt/mTOR signaling has been found in 40% of bladder cancers. Several microRNAs (miRNAs) have been reported to interact with the PI3K/Akt/mTOR signaling pathway with a different possible role in proliferation and apoptosis in bladder cancer. Thus, miRNAs can be used as potential biomarkers for BC. Natural compounds have been in the spotlight for the past decade due to their effective anti-proliferative capabilities. However, little is known of its possible effects in bladder cancer. The aim of this review is to discuss the interplay between PI3K/Akt/mTOR, miRNAs, and natural compounds and emphasize the importance of miRNAs as biomarkers and resveratrol, curcumin and paclitaxel as a possible therapeutic approach against bladder cancer.

11.
Biomed Pharmacother ; 132: 110908, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254431

RESUMO

Ginkgolide A is a highly active platelet activating factor antagonist cage molecule which was isolated from the leaves of the Ginkgo biloba L. It is known for its inflammatory and immunological potentials. This review aims to sketch a current scenario on its therapeutic activities on the basis of scientific reports in the databases. A total 30 articles included in this review suggests that ginkgolide A has many important biological activities, including anti-inflammatory, anticancer, anxiolytic-like, anti-atherosclerosis and anti-atherombosis, neuro- and hepatoprotective effects. There is a lack of its toxicological (e.g. toxicity, cytotoxicity, genotoxicity and mutagenitcity) profile. In conclusion, ginkgolide A may be one of the potential therapeutic lead compounds, especially for the treatment of cardiovascular, hepatological, and neurological diseases and disorders. More studies are necessary on this hopeful therapeutic agent.


Assuntos
Ginkgo biloba , Ginkgolídeos/farmacologia , Ginkgolídeos/uso terapêutico , Lactonas/farmacologia , Lactonas/uso terapêutico , Fator de Ativação de Plaquetas/antagonistas & inibidores , Animais , Ansiolíticos/isolamento & purificação , Ansiolíticos/uso terapêutico , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Ginkgolídeos/isolamento & purificação , Humanos , Lactonas/isolamento & purificação , Folhas de Planta , Fator de Ativação de Plaquetas/metabolismo
12.
Iran J Pharm Res ; 19(2): 9-21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224207

RESUMO

Drug development is a key point in the research of new therapeutic treatments for increasing maximum drug loading and prolonged drug effect. Encapsulation of drugs into multivesicular liposomes (DepoFoam) is a nanotechnology that allow delivery of the active constituent at a sufficient concentration during the entire treatment period. This guarantees the reduction of drug administration frequency, a very important factor in a prolonged treatment. Currently, diverse DepoFoam drugs are approved for clinical use against neurological diseases and for post-surgical pain management while other are under development for reducing surgical bleeding and for post-surgical analgesia. Also, on pre-clinical trials on cancer DepoFoam can improve bioavailability and stability of the drug molecules minimizing side effects by site-specific targeted delivery. In the current work, available literature on structure, preparation and pharmacokinetics of DepoFoam are reviewed. Moreover, we investigated approved DepoFoam formulations and preclinical studies with this nanotechnology.

13.
Front Pharmacol ; 11: 571459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192514

RESUMO

Analysis of the most relevant studies on the pharmacological properties and molecular mechanisms of psoralidin, a bioactive compound from the seeds of Cullen corylifolium (L.) Medik. confirmed its complex therapeutic potential. In the last years, the interest of the scientific community regarding psoralidin increased, especially after the discovery of its benefits in estrogen-related diseases and as a chemopreventive agent. Growing preclinical pieces of evidence indicate that psoralidin has anticancer, antiosteoporotic, anti-inflammatory, anti-vitiligo, antibacterial, antiviral, and antidepressant-like effects. Here, we provide a comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways. In this review, we conducted literature research on the PubMed database using the following keywords: "Psoralidin" or "therapeutic effects" or "biological activity" or "Cullen corylifolium" in order to identify relevant studies regarding PSO bioavailability and mechanisms of therapeutic effects in different diseases based on preclinical, experimental studies. In the light of psoralidin beneficial actions for human health, this paper gathers complete information on its pharmacotherapeutic effects and opens new natural therapeutic perspectives in chronic diseases.

14.
Front Pharmacol ; 11: 01021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041781

RESUMO

Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin's multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered.

15.
Front Pharmacol ; 11: 1300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982731

RESUMO

Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.

16.
Chem Biol Interact ; 330: 109219, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846153

RESUMO

The lack of tissue selectivity of anticancer drugs generates intense collateral and adverse effects of cancer patients, making the incorporation of vitamins or micronutrients into the diet of individuals to reduce side or adverse effects of antineoplastics. The study aimed to evaluate the effects of retinol palmitate (RP) on the toxicogenic damages induced by cyclophosphamide (CPA), doxorubicin (DOX) and its association with the AC protocol (CPA + DOX), in Sarcoma 180 (S-180) tumor cell line, using the micronuclei test with a block of cytokinesis (CBMN); and in non-tumor cells derived from Mus musculus using the comet assay. The results suggest that CPA, DOX and AC protocol induced significant toxicogenic damages (P < 0.05) on the S-180 cells by induction of micronuclei, cytoplasmic bridges, nuclear buds, apoptosis, and cell necrosis, proving their antitumor effects, and significant damage (P < 0.001) to the genetic material of peripheral blood cells of healthy mice, proving the genotoxic potential of these drugs. However, RP modulated the toxicogenic effects of antineoplastic tested both in the CBMN test (P < 0.05), at the concentrations of 1, 10 and 100 IU/mL; as in the comet assay (P < 0.001) at the concentration of 100 IU/kg for the index and frequency of genotoxic damage. The accumulated results suggest that RP reduced the action of antineoplastics in non-tumor cells as well as the cytotoxic, mutagenic, and cell death in neoplastic cells.


Assuntos
Antineoplásicos/toxicidade , Diterpenos/farmacologia , Vitamina A/análogos & derivados , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Ensaio Cometa , Ciclofosfamida/efeitos adversos , Ciclofosfamida/toxicidade , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Interações Medicamentosas , Humanos , Camundongos , Testes para Micronúcleos , Mutagênese/efeitos dos fármacos , Ésteres de Retinil , Vitamina A/farmacologia
17.
BMC Complement Med Ther ; 20(1): 241, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738903

RESUMO

Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory, cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical. Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.


Assuntos
Suplementos Nutricionais , Flavonoides/química , Flavonoides/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia
18.
Oncol Lett ; 20(4): 37, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802161

RESUMO

Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.

19.
Cancer Cell Int ; 20: 326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699525

RESUMO

The outlook for new therapeutic approaches is pivotal to ameliorate the deterioration caused by the abrogated Wnt signaling. Long non-coding RNAs (lncRNAs) are tiny molecules that have begun emerging as vital molecular manager for the regulation of various cellular processes at transcription and translation levels in the colorectal cancer (CRC). Targeting Wnt pathway with lncRNA seems a promising approach to eradicate CRC. However, little is known of their active role in commencing both apoptosis and proliferation in CRC. This article  reviews the importance of these molecules in the pathogenesis of CRC and also emphasizes on the development of new therapeutic strategies to cope with the Wnt mediated CRC.

20.
ACS Omega ; 5(20): 11849-11872, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478277

RESUMO

Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA