Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteomics Clin Appl ; : e202300236, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073724

RESUMO

BACKGROUND: Biomarkers for metabolic dysfunction-associated steatohepatitis (MASH) have been considered based on proteomic and lipidomic data from plasma and liver tissue without clinical benefits. This study evaluated proteomics-based plasma and liver tissue biomarkers collected simultaneously from patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Liver tissue and plasma samples were collected during liver biopsy to diagnose MASLD. Untargeted proteomics was performed on 64 patients. RESULTS: Twenty plasma proteins were up- or downregulated in patients with MASH compared with those without MASH. The potential biomarkers utilizing the best combinations of these plasma proteins had an area under the receiver operating curve (AUROC) of 0.671 for detecting those with MASH compared with those without it. However, none of the 20 plasma proteins were represented among the significantly regulated liver tissue proteins in patients with MASH. Ten of them displayed a trend and relevance in liver tissue with MASLD progression. These 10 plasma proteins had an AUROC of 0.793 for MASH identification and higher positive and negative predictive values. CONCLUSION: The plasma and liver protein expressions of patients with MASH were not directly comparable. Plasma protein biomarkers that are also expressed in liver tissue can help improve MASH detection.

2.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617306

RESUMO

Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.

3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894945

RESUMO

Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.


Assuntos
Herbicidas , Prometrina , Humanos , Animais , Camundongos , Prometrina/análise , Prometrina/metabolismo , Prometrina/farmacologia , Complexo de Endopeptidases do Proteassoma , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Herbicidas/toxicidade , Plantas/metabolismo , Mitocôndrias/metabolismo
4.
J Natl Cancer Inst Monogr ; 2023(61): 12-29, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139973

RESUMO

The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.


Assuntos
COVID-19 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animais , Camundongos , Proteômica , SARS-CoV-2 , Obesidade/complicações , Obesidade/metabolismo
5.
PLoS One ; 18(3): e0283619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000833

RESUMO

Protein profiling offers an effective approach to characterizing how far epidermis departs from normal in disease states. The present pilot investigation tested the hypothesis that protein expression in epidermal corneocytes is perturbed in the forehead of subjects exhibiting frontal fibrosing alopecia. To this end, samples were collected by tape stripping from subjects diagnosed with this condition and compared to those from asymptomatic control subjects and from those exhibiting androgenetic alopecia. Unlike the latter, which exhibited only 3 proteins significantly different from controls in expression level, forehead samples from frontal fibrosing alopecia subjects displayed 72 proteins significantly different from controls, nearly two-thirds having lower expression. The results demonstrate frontal fibrosing alopecia exhibits altered corneocyte protein expression in epidermis beyond the scalp, indicative of a systemic condition. They also provide a basis for quantitative measures of departure from normal by assaying forehead epidermis, useful in monitoring response to treatment while avoiding invasive biopsy.


Assuntos
Testa , Líquen Plano , Humanos , Testa/patologia , Alopecia/patologia , Pele/patologia , Epiderme/patologia , Couro Cabeludo/patologia , Fibrose , Líquen Plano/patologia
6.
Cell Rep ; 39(6): 110797, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545034

RESUMO

The protein TRIM5α has multiple roles in antiretroviral defense, but the mechanisms underlying TRIM5α action are unclear. Here, we employ APEX2-based proteomics to identify TRIM5α-interacting partners. Our proteomics results connect TRIM5 to other proteins with actions in antiviral defense. Additionally, they link TRIM5 to mitophagy, an autophagy-based mode of mitochondrial quality control that is compromised in several human diseases. We find that TRIM5 is required for Parkin-dependent and -independent mitophagy pathways where TRIM5 recruits upstream autophagy regulators to damaged mitochondria. Expression of a TRIM5 mutant lacking ubiquitin ligase activity is unable to rescue mitophagy in TRIM5 knockout cells. Cells lacking TRIM5 show reduced mitochondrial function under basal conditions and are more susceptible to immune activation and death in response to mitochondrial damage than are wild-type cells. Taken together, our studies identify a homeostatic role for a protein previously recognized exclusively for its antiviral actions.


Assuntos
Infecções por HIV , Mitofagia , Fatores de Restrição Antivirais , Autofagia/fisiologia , HIV , Humanos , Proteínas/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Cell Rep ; 39(6): 110788, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545047

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.


Assuntos
Herpesvirus Humano 8 , RNA Longo não Codificante , Sarcoma de Kaposi , Antígenos Virais/genética , Antígenos Virais/metabolismo , Cromossomos/metabolismo , Herpesvirus Humano 8/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Plasmídeos , RNA Longo não Codificante/genética , Microambiente Tumoral , Latência Viral/genética
8.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34741801

RESUMO

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Assuntos
Autofagossomos/virologia , COVID-19/virologia , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Complexo de Golgi/fisiologia , Células HEK293 , Células HeLa , Humanos , Fusão de Membrana , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/virologia , Proteínas Qa-SNARE/biossíntese , Receptores sigma/biossíntese , SARS-CoV-2 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sinaptotagminas/biossíntese , Receptor Sigma-1
9.
Forensic Sci Int Genet ; 54: 102564, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315035

RESUMO

This study examines the potential of hair shaft proteomic analysis to delineate genetic relatedness. Proteomic profiling and amino acid sequence analysis provide information for quantitative and statistically-based analysis of individualization and sample similarity. Protein expression levels are a function of cell-specific transcriptional and translational programs. These programs are greatly influenced by an individual's genetic background, and are therefore influenced by familial relatedness as well as ancestry and genetic disease. Proteomic profiles should therefore be more similar among related individuals than unrelated individuals. Likewise, profiles of genetically variant peptides that contain single amino acid polymorphisms, the result of non-synonymous SNP alleles, should behave similarly. The proteomically-inferred SNP alleles should also provide a basis for calculation of combined paternity and sibship indices. We test these hypotheses using matching proteomic and genetic datasets from a family of two adults and four siblings, one of which has a genetic condition that perturbs hair structure and properties. We demonstrate that related individuals, compared to those who are unrelated, have more similar proteomic profiles, profiles of genetically variant peptides and higher combined paternity indices and combined sibship indices. This study builds on previous analyses of hair shaft protein profiling and genetically variant peptide profiles in different real-world scenarios including different human hair shaft body locations and pigmentation status. It also validates the inclusion of proteomic information with other biomolecular substrates in forensic hair shaft analysis, including mitochondrial and nuclear DNA.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteômica , Cabelo , Humanos , Espectrometria de Massas , Peptídeos/genética
10.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034859

RESUMO

Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.


Assuntos
Sistemas CRISPR-Cas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Antimicina A/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Proibitinas , Proteólise , Proteínas Repressoras/genética
11.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33597212

RESUMO

Studies on "hit-and-run" effects by viral proteins are difficult when using traditional affinity precipitation-based techniques under dynamic conditions, because only proteins interacting at a specific instance in time can be precipitated by affinity purification. Recent advances in proximity labeling (PL) have enabled identification of both static and dynamic protein-protein interactions. In this study, we applied a PL method by generating recombinant Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV, a gammaherpesvirus, uniquely encodes four interferon regulatory factors (IRF-1 to -4) that suppress host interferon responses, and we examined KSHV IRF-1 and IRF-4 neighbor proteins to identify cellular proteins involved in innate immune regulation. PL identified 213 and 70 proteins as neighboring proteins of viral IRF-1 (vIRF-1) and vIRF-4 during viral reactivation, and 47 proteins were shared between the two vIRFs; the list also includes three viral proteins, ORF17, thymidine kinase, and vIRF-4. Functional annotation of respective interacting proteins showed highly overlapping biological roles such as mRNA processing and transcriptional regulation by TP53. Innate immune regulation by these commonly interacting 44 cellular proteins was examined with small interfering RNAs (siRNAs), and the splicing factor 3B family proteins were found to be associated with interferon transcription and to act as suppressors of KSHV reactivation. We propose that recombinant mini-TurboID-KSHV is a powerful tool to probe key cellular proteins that play a role in KSHV replication and that selective splicing factors have a function in the regulation of innate immune responses.IMPORTANCE Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Proximity labeling (PL), however, can also highlight transient and negative effects-those interactions which lead to dissociation from the existing protein complex. Here, we highlight the power of PL in combination with recombinant KSHV to study viral host interactions.


Assuntos
Biotinilação/métodos , Herpesvirus Humano 8/metabolismo , Fatores Reguladores de Interferon/metabolismo , Proteômica , Sarcoma de Kaposi/virologia , Proteínas Virais/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Replicação Viral
12.
Life (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261033

RESUMO

Walnuts (Juglans regia L.) are a valuable dietary source of polyphenols and lipids, with increasing worldwide consumption. California is a major producer, with 'Chandler' and 'Tulare' among the cultivars more widely grown. 'Chandler' produces kernels with extra light color at a higher frequency than other cultivars, gaining preference by growers and consumers. Here we performed a deep comparative proteome analysis of kernel pellicle tissue from these two valued genotypes at three harvest maturities, detecting a total of 4937 J. regia proteins. Late and early maturity stages were compared for each cultivar, revealing many developmental responses common or specific for each cultivar. Top protein biomarkers for each developmental stage were also selected based on larger fold-change differences and lower variance among replicates, including proteins for biosynthesis of lipids and phenols, defense-related proteins and desiccation stress-related proteins. Comparison between the genotypes also revealed the common and specific protein repertoires, totaling 321 pellicle proteins with differential abundance at harvest stage. The proteomics data provides clues on antioxidant, secondary, and hormonal metabolism that could be involved in the loss of quality in the pellicles during processing for commercialization.

13.
Sci Rep ; 10(1): 11897, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681049

RESUMO

Sex estimation of skeletons is fundamental to many archaeological studies. Currently, three approaches are available to estimate sex-osteology, genomics, or proteomics, but little is known about the relative reliability of these methods in applied settings. We present matching osteological, shotgun-genomic, and proteomic data to estimate the sex of 55 individuals, each with an independent radiocarbon date between 2,440 and 100 cal BP, from two ancestral Ohlone sites in Central California. Sex estimation was possible in 100% of this burial sample using proteomics, in 91% using genomics, and in 51% using osteology. Agreement between the methods was high, however conflicts did occur. Genomic sex estimates were 100% consistent with proteomic and osteological estimates when DNA reads were above 100,000 total sequences. However, more than half the samples had DNA read numbers below this threshold, producing high rates of conflict with osteological and proteomic data where nine out of twenty conditional DNA sex estimates conflicted with proteomics. While the DNA signal decreased by an order of magnitude in the older burial samples, there was no decrease in proteomic signal. We conclude that proteomics provides an important complement to osteological and shotgun-genomic sex estimation.


Assuntos
Arqueologia , Osteologia/métodos , Proteômica , Determinação do Sexo pelo Esqueleto/métodos , Amelogenina/análise , Sequência de Bases , California , DNA/análise , Feminino , Geografia , Humanos , Masculino , Peptídeos/análise
14.
Forensic Sci Int Genet ; 47: 102309, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485593

RESUMO

Recent reports highlight possible improvements in individual identification using proteomic information from human hair evidence. These reports have stimulated investigation of parameters that affect the utility of proteomic information. In addition to variables already studied relating to processing technique and anatomic origin of hair shafts, an important variable is hair ageing. Present work focuses on the effect of age on protein profiling and analysis of genetically variant peptides (GVPs). Hair protein profiles may be affected by developmental and physiological changes with age of the donor, exposure to different environmental conditions and intrinsic processes, including during storage. First, to explore whether general trends were evident in the population at different ages, hair samples were analyzed from groups of different subjects in their 20's, 40's and 60's. No significant differences were seen as a function of age, but consistent differences were evident between European American and African American hair profiles. Second, samples collected from single individuals at different ages were analyzed. Mostly, these showed few protein expression level differences over periods of 10 years or less, but samples from subjects at 44 and 65 year intervals were distinctly different in profile. The results indicate that use of protein profiling for personal identification, if practical, would be limited to decadal time intervals. Moreover, batch effects were clearly evident in samples processed by different staff. To investigate the contribution of storage (at room temperature) in affecting the outcomes, the same proteomic digests were analyzed for GVPs. In samples stored over 10 years, GVPs were reduced in number in parallel with the yield of identified proteins and unique peptides. However, a very different picture emerged with respect to personal identification. Numbers of GVPs sufficed to distinguish individuals despite the age differences of the samples. As a practical matter, three hair samples per person provided nearly the maximal number obtained from 5 or 6 samples. The random match probability (where the log increased in proportion to the number of GVPs) reached as high as 1 in 108. The data indicate that GVP results are dependent on the single nucleotide polymorphism profile of the donor genome, where environmental/processing factors affect only the yield, and thus are consistent despite the ages of the donors and samples and batchwise effects in processing. This conclusion is critical for application to casework where the samples may be in storage for long periods and used to match samples recently collected.


Assuntos
Envelhecimento , Cabelo/metabolismo , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , Adulto , Negro ou Afro-Americano , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Peptídeos/genética , Proteínas/genética , Proteômica , População Branca , Adulto Jovem
15.
Forensic Sci Int Genet ; 47: 102314, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505640

RESUMO

The use of hair evidence for human identification is undergoing considerable improvement through the adoption of proteomic genotyping. Unlike traditional microscopic comparisons, protein sequencing provides quantitative and empirically based estimates for random match probability. Non-synonymous SNPs are translated as single amino acid polymorphisms and result in genetically variant peptides. Using high resolution mass spectrometry, these peptides can be detected in hair shaft proteins and used to infer the genotypes of corresponding SNP alleles. We describe experiments to optimize the proteomic genotyping approach to individual identification from a single human scalp hair 2 cm in length (∼100 µg). This is a necessary step to develop a protocol that will be useful to forensic investigators. To increase peptide yield from hair, and to maximize genetically variant peptide and ancestral information, we examined the conditions for reduction, alkylation, and protein digestion that specifically address the distinctive chemistry of the hair shaft. Results indicate that optimal conditions for proteomic analysis of a single human hair include 6 h of reduction with 100 mM dithiothreitol at room temperature, alkylation with 200 mM iodoacetamide for 45 min, and 6 h of digestion with two 1:50 (enzyme:protein) additions of stabilized trypsin at room temperature, with stirring incorporated into all three steps. Our final conditions using optimized temperatures and incubation times increased the average number of genetically variant peptides from 20 ±â€¯5 to 73 ±â€¯5 (p = 1 × 10-13), excluding intractable hair samples. Random match probabilities reached up to 1 in 620 million from a single hair with a median value of 1 in 1.1 million, compared to a maximum random match probability of 1 in 1380 and a median value of 1 in 24 for the original hair protein extraction method. Ancestral information was also present in the data. While the number of genetically variant peptides detected were equivalent for both European and African subjects, the estimated random match probabilities for inferred genotypes of European subjects were considerably smaller in African reference populations and vice versa, resulting in a difference in likelihood ratios of 6.8 orders of magnitude. This research will assure uniformity in results across different biogeographic backgrounds and enhance the use of novel peptide analysis in forensic science by helping to optimize genetically variant peptide yields and discovery. This work also introduces two algorithms, GVP Finder and GVP Scout, which facilitate searches, calculate random match probabilities, and aid in discovery of genetically variant peptides.


Assuntos
Cabelo/metabolismo , Peptídeos/metabolismo , Proteômica , Genética Forense/métodos , Frequência do Gene , Genótipo , Humanos , Espectrometria de Massas , Peptídeos/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas/metabolismo , Manejo de Espécimes
16.
J Proteomics ; 207: 103449, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323424

RESUMO

Verticillium dahliae colonizes vascular tissue and causes vascular discoloration in susceptible hosts. Two well-defined races exist in V. dahliae populations from tomato and lettuce. In this study, proteins and metabolites obtained from stems of race 1-incompatible (Beefsteak) and -compatible (Early Pak) tomato cultivars were characterized. A total of 814 and 584 proteins in Beefsteak; and 456 and 637 proteins in Early Pak were identified in stem extracts of plants inoculated with races 1 and 2, respectively. A significant number of defense-related proteins were expressed in each tomato-V. dahliae interaction, as anticipated. However, phenylalanine ammonia-lyase (PAL), an important defense-associated enzyme of the phenylpropanoid pathway, in addition to remorin 1, NAD-dependent epimerase/dehydratase, and polyphenol oxidase were uniquely expressed in the incompatible interaction. Compared with the uninoculated control, significant overexpression of gene ontology terms associated with lignin biosynthesis, phenylpropanoid pathway and carbohydrate methylation were identified exclusively in the incompatible interaction. Phenolic compounds known to be involved in plant defense mechanisms were at higher levels in the incompatible relative to the compatible interactions. Based on our findings, PAL and enzymes involved defense-related secondary metabolism and the strengthening of cell walls is likely critical to confer resistance to race 1 of V. dahliae in tomato. SIGNIFICANCE: Verticillium dahliae, a soilborne fungal pathogen and a widely distributed fungal pathogen, colonizes vascular tissue and causes vascular discoloration in roots and stems, leaf wilting, and death of susceptible plant hosts. It causes billions of dollars in annual crop losses all over the world. The study focused on the proteomic and metabalomic of V. dahliae interactions (incompatible with Beefsteak and compatible with Early Pak tomato cultivars). Based on our findings, PAL and enzymes involved defense-related secondary metabolism and the strengthening of cell walls is likely critical to confer resistance to race 1 of V. dahliae in tomato.


Assuntos
Metaboloma , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum lycopersicum , Verticillium/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia
17.
Forensic Sci Int Genet ; 42: 21-30, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212206

RESUMO

Proteomic genotyping detects single amino acid polymorphisms to infer the genotype of corresponding non-synonymous SNPs. Like any DNA genotype, these inferences can be used to estimate random match probability. Fingermarks are a common source of biological evidence that is sample limited and a highly variable source of identifying DNA. Genetically variant peptides from fingermarks, that contain single amino acid polymorphisms, are an additional source of identifying genetic information. To discover these peptide biomarkers epidermal corneocytes from 9 subjects were isolated, processed, digested with trypsin and applied to mass spectrometry. The resulting proteomic and matching exome datasets were used to discover, characterize and validate 60 genetically variant peptides. An average of 28.8 ± 4.4 genetically variant peptides were detected from each subject resulting in a total of 264 SNP allele inferences with 260 true and 4 false positives, a false discovery rate of 1.5%. Random match probabilities were estimated using the genotype frequencies from the matching major populations in the 1000 Genomes Project. Estimates ranged up to a value of 1 in 1.7 × 108, with a median probability of 1 in 2.4 × 106. Furthermore, the proteomically-inferred genotypes are likely to be compatible with the STR-based random match probability estimates since the closest STR locus was 2.2 Mb from the nearest GVP-inferred SNP. This project represents a novel mode of genetic information that can be obtained from fingermarks and has the potential to complement other methods of human identification including analysis of ridge patterns or touch DNA.


Assuntos
Dermatoglifia , Células Epidérmicas/metabolismo , Genótipo , Peptídeos/genética , Proteoma/genética , Alelos , Cromatografia Líquida , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteoma/metabolismo , Proteômica
18.
Sci Rep ; 7(1): 12488, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970503

RESUMO

Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity-C18 epoxide and diol oxylipins.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Hepatomegalia/etiologia , Obesidade/etiologia , Oxilipinas/metabolismo , Óleo de Soja/efeitos adversos , Animais , Óleo de Coco/administração & dosagem , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta com Restrição de Gorduras/métodos , Gorduras na Dieta/efeitos adversos , Ácidos Graxos Ômega-3/classificação , Ácidos Graxos Ômega-6/classificação , Perfilação da Expressão Gênica , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Oxilipinas/classificação , Proteoma/genética , Proteoma/metabolismo
19.
Proteomics ; 17(13-14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544375

RESUMO

Forensic association of hair shaft evidence with individuals is currently assessed by comparing mitochondrial DNA haplotypes of reference and casework samples, primarily for exclusionary purposes. Present work tests and validates more recent proteomic approaches to extract quantitative transcriptional and genetic information from hair samples of monozygotic twin pairs, which would be predicted to partition away from unrelated individuals if the datasets contain identifying information. Protein expression profiles and polymorphic, genetically variant hair peptides were generated from ten pairs of monozygotic twins. Profiling using the protein tryptic digests revealed that samples from identical twins had typically an order of magnitude fewer protein expression differences than unrelated individuals. The data did not indicate that the degree of difference within twin pairs increased with age. In parallel, data from the digests were used to detect genetically variant peptides that result from common nonsynonymous single nucleotide polymorphisms in genes expressed in the hair follicle. Compilation of the variants permitted sorting of the samples by hierarchical clustering, permitting accurate matching of twin pairs. The results demonstrate that genetic differences are detectable by proteomic methods and provide a framework for developing quantitative statistical estimates of personal identification that increase the value of hair shaft evidence.


Assuntos
Perfilação da Expressão Gênica/métodos , Cabelo/metabolismo , Peptídeos/análise , Polimorfismo de Nucleotídeo Único , Proteoma/análise , Gêmeos Monozigóticos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Cabelo/química , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Adulto Jovem
20.
Carcinogenesis ; 38(3): 271-280, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049629

RESUMO

Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer (NSCLC) adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma: (1) increased glycosylation and glutaminolysis; (2) elevated Nrf2 activation; (3) increase in nicotinic and nicotinamide salvaging pathways; and (4) elevated polyamine biosynthesis linked to differential regulation of the SAM/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompanies early stage lung tumorigenesis and highlight potential therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA