Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteomics Clin Appl ; : e202300236, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073724

RESUMO

BACKGROUND: Biomarkers for metabolic dysfunction-associated steatohepatitis (MASH) have been considered based on proteomic and lipidomic data from plasma and liver tissue without clinical benefits. This study evaluated proteomics-based plasma and liver tissue biomarkers collected simultaneously from patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Liver tissue and plasma samples were collected during liver biopsy to diagnose MASLD. Untargeted proteomics was performed on 64 patients. RESULTS: Twenty plasma proteins were up- or downregulated in patients with MASH compared with those without MASH. The potential biomarkers utilizing the best combinations of these plasma proteins had an area under the receiver operating curve (AUROC) of 0.671 for detecting those with MASH compared with those without it. However, none of the 20 plasma proteins were represented among the significantly regulated liver tissue proteins in patients with MASH. Ten of them displayed a trend and relevance in liver tissue with MASLD progression. These 10 plasma proteins had an AUROC of 0.793 for MASH identification and higher positive and negative predictive values. CONCLUSION: The plasma and liver protein expressions of patients with MASH were not directly comparable. Plasma protein biomarkers that are also expressed in liver tissue can help improve MASH detection.

2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894945

RESUMO

Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.


Assuntos
Herbicidas , Prometrina , Humanos , Animais , Camundongos , Prometrina/análise , Prometrina/metabolismo , Prometrina/farmacologia , Complexo de Endopeptidases do Proteassoma , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Herbicidas/toxicidade , Plantas/metabolismo , Mitocôndrias/metabolismo
3.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034859

RESUMO

Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.


Assuntos
Sistemas CRISPR-Cas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Antimicina A/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Proibitinas , Proteólise , Proteínas Repressoras/genética
4.
Life (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261033

RESUMO

Walnuts (Juglans regia L.) are a valuable dietary source of polyphenols and lipids, with increasing worldwide consumption. California is a major producer, with 'Chandler' and 'Tulare' among the cultivars more widely grown. 'Chandler' produces kernels with extra light color at a higher frequency than other cultivars, gaining preference by growers and consumers. Here we performed a deep comparative proteome analysis of kernel pellicle tissue from these two valued genotypes at three harvest maturities, detecting a total of 4937 J. regia proteins. Late and early maturity stages were compared for each cultivar, revealing many developmental responses common or specific for each cultivar. Top protein biomarkers for each developmental stage were also selected based on larger fold-change differences and lower variance among replicates, including proteins for biosynthesis of lipids and phenols, defense-related proteins and desiccation stress-related proteins. Comparison between the genotypes also revealed the common and specific protein repertoires, totaling 321 pellicle proteins with differential abundance at harvest stage. The proteomics data provides clues on antioxidant, secondary, and hormonal metabolism that could be involved in the loss of quality in the pellicles during processing for commercialization.

5.
Forensic Sci Int Genet ; 47: 102314, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505640

RESUMO

The use of hair evidence for human identification is undergoing considerable improvement through the adoption of proteomic genotyping. Unlike traditional microscopic comparisons, protein sequencing provides quantitative and empirically based estimates for random match probability. Non-synonymous SNPs are translated as single amino acid polymorphisms and result in genetically variant peptides. Using high resolution mass spectrometry, these peptides can be detected in hair shaft proteins and used to infer the genotypes of corresponding SNP alleles. We describe experiments to optimize the proteomic genotyping approach to individual identification from a single human scalp hair 2 cm in length (∼100 µg). This is a necessary step to develop a protocol that will be useful to forensic investigators. To increase peptide yield from hair, and to maximize genetically variant peptide and ancestral information, we examined the conditions for reduction, alkylation, and protein digestion that specifically address the distinctive chemistry of the hair shaft. Results indicate that optimal conditions for proteomic analysis of a single human hair include 6 h of reduction with 100 mM dithiothreitol at room temperature, alkylation with 200 mM iodoacetamide for 45 min, and 6 h of digestion with two 1:50 (enzyme:protein) additions of stabilized trypsin at room temperature, with stirring incorporated into all three steps. Our final conditions using optimized temperatures and incubation times increased the average number of genetically variant peptides from 20 ±â€¯5 to 73 ±â€¯5 (p = 1 × 10-13), excluding intractable hair samples. Random match probabilities reached up to 1 in 620 million from a single hair with a median value of 1 in 1.1 million, compared to a maximum random match probability of 1 in 1380 and a median value of 1 in 24 for the original hair protein extraction method. Ancestral information was also present in the data. While the number of genetically variant peptides detected were equivalent for both European and African subjects, the estimated random match probabilities for inferred genotypes of European subjects were considerably smaller in African reference populations and vice versa, resulting in a difference in likelihood ratios of 6.8 orders of magnitude. This research will assure uniformity in results across different biogeographic backgrounds and enhance the use of novel peptide analysis in forensic science by helping to optimize genetically variant peptide yields and discovery. This work also introduces two algorithms, GVP Finder and GVP Scout, which facilitate searches, calculate random match probabilities, and aid in discovery of genetically variant peptides.


Assuntos
Cabelo/metabolismo , Peptídeos/metabolismo , Proteômica , Genética Forense/métodos , Frequência do Gene , Genótipo , Humanos , Espectrometria de Massas , Peptídeos/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas/metabolismo , Manejo de Espécimes
6.
Carcinogenesis ; 38(3): 271-280, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049629

RESUMO

Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer (NSCLC) adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma: (1) increased glycosylation and glutaminolysis; (2) elevated Nrf2 activation; (3) increase in nicotinic and nicotinamide salvaging pathways; and (4) elevated polyamine biosynthesis linked to differential regulation of the SAM/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompanies early stage lung tumorigenesis and highlight potential therapeutic targets.

7.
J Proteome Res ; 15(9): 3358-76, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27500424

RESUMO

Ovarian cancer is a major cause of cancer mortality among women, largely due to late diagnosis of advanced metastatic disease. More extensive molecular analysis of metastatic ovarian cancer is needed to identify post-translational modifications of proteins, especially glycosylation that is particularly associated with metastatic disease to better understand the metastatic process and identify potential therapeutic targets. Glycoproteins in ascites fluid were enriched by affinity binding to lectins (ConA or WGA) and other affinity matrices. Separate glycomic, proteomic, and glycopeptide analyses were performed. Relative abundances of different N-glycan groups and proteins were identified from ascites fluids and a serum control. Levels of biomarkers CA125, MUC1, and fibronectin were also monitored in OC ascites samples by Western blot analysis. N-Glycan analysis of ascites fluids showed the presence of large, highly fucosylated and sialylated complex and hybrid glycans, some of which were not observed in normal serum. OC ascites glycoproteins, haptoglobin, fibronectin, lumican, fibulin, hemopexin, ceruloplasmin, alpha-1-antitrypsin, and alpha-1-antichymotrypsin were more abundant in OC ascites or not present in serum control samples. Further glycopeptide analysis of OC ascites identified N- and O-glycans in clusterin, hemopexin, and fibulin glycopeptides, some of which are unusual and may be important in OC metastasis.


Assuntos
Líquido Ascítico/química , Glicômica , Glicopeptídeos/análise , Neoplasias Ovarianas/química , Proteômica , Antígeno Ca-125/análise , Feminino , Fibronectinas/análise , Glicoproteínas , Humanos , Lectinas/metabolismo , Mucina-1/análise , Polissacarídeos/metabolismo , Proteômica/métodos
8.
J Proteome Res ; 13(4): 1833-47, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24555639

RESUMO

The ubiquitous bacterium Caulobacter crescentus holds promise to be used in bioremediation applications due to its ability to mineralize U(VI) under aerobic conditions. Here, cell free extracts of C. crescentus grown in the presence of uranyl nitrate [U(VI)], potassium chromate [Cr(VI)], or cadmium sulfate [Cd(II)] were used for label-free proteomic analysis. Proteins involved in two-component signaling and amino acid metabolism were up-regulated in response to all three metals, and proteins involved in aerobic oxidative phosphorylation and chemotaxis were down-regulated under these conditions. Clustering analysis of proteomic enrichment revealed that the three metals also induce distinct patterns of up- or down-regulated expression among different functional classes of proteins. Under U(VI) exposure, a phytase enzyme and an ABC transporter were up-regulated. Heat shock and outer membrane responses were found associated with Cr(VI), while efflux pumps and oxidative stress proteins were up-regulated with Cd(II). Experimental validations were performed on select proteins. We found that a phytase plays a role in U(VI) and Cr(VI) resistance and detoxification and that a Cd(II)-specific transporter confers Cd(II) resistance. Interestingly, analysis of promoter regions in genes associated with differentially expressed proteins suggests that U(VI) exposure affects cell cycle progression.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Metais Pesados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Mapeamento de Peptídeos/métodos , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/efeitos dos fármacos , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiologia , Ciclo Celular/efeitos dos fármacos , Fragmentos de Peptídeos , Proteoma/análise , Proteoma/química , Proteoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Chem Res Toxicol ; 18(5): 802-13, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15892573

RESUMO

Airway epithelial cells are a susceptible site for injury by ambient air toxicants such as naphthalene that undergo P450-dependent metabolic activation. The metabolism of naphthalene in Clara cells to reactive intermediates that bind covalently to proteins correlates with cell toxicity. Although several proteins adducted by reactive naphthalene metabolites were identified in microsomal incubations, new methods that maintain the structural integrity of the lung are needed to examine protein targets. Therefore, we developed a method that involves inflation of the lungs via the trachea with medium containing (14)C-naphthalene followed by incubation in situ. The viability of this preparation is supported by maintenance of glutathione levels, rates of naphthalene metabolism, and exclusion of ethidium homodimer-1 from airway epithelium. Following in situ incubation, the levels of adduct per milligram of protein were measured in proteins obtained from bronchoalveolar lavage, epithelial cells, and remaining lung. The levels of adducted proteins obtained in lavage and epithelial cells were similar and were 20-fold higher than those in residual lung tissue. (14)C-Labeled adducted proteins were identified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) and quadrupole-TOF MS/MS. Major adducted proteins include cytoskeletal proteins, proteins involved in folding and translocation, ATP synthase, extracellular proteins, redox proteins, and selenium binding proteins. We conclude that in situ incubation maintains structural integrity of the lung while allowing examination of reactive intermediate activation and interaction with target cell proteins of the lung. The proteins adducted and identified from in situ incubations were not the same proteins identified from microsomal incubations.


Assuntos
Pulmão/metabolismo , Microssomos/metabolismo , Naftalenos/metabolismo , Proteínas/metabolismo , Animais , Radioisótopos de Carbono , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Proteínas do Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Glutationa/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Oxirredução , Conformação Proteica , Proteínas de Ligação a Selênio , Uteroglobina/metabolismo
10.
J Biol Chem ; 280(13): 12162-7, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15691838

RESUMO

We used a proteomic approach to identify proteins that associate with keratins 8 or 18 (K8/K18) in a pervanadate-dependent manner. Pervanadate triggers Ran-K8/K18 binding and a gel-migration-shift of Ran from 25 to 27 kDa, which does not occur upon exposure to H2O2 or vanadate or if pervanadate is excluded during cell solubilization. Generation of 27-kDa Ran is not related to hyperphosphorylation, is heat-insensitive, but occurs upon conversion of Ran cysteines to cysteic acid. The pervanadate-mediated Ran cysteine --> cysteic acid oxidation and its related gel migration shift affects other proteins including actin. Mutation of the three Ran cysteines (Cys-85, -112, and -120) showed that Ran Cys-112 oxidation generates 27-kDa Ran and accounts for its keratin binding. Proteasome inhibition accentuates Ran-keratin binding after cell exposure to pervanadate. Therefore, cell-free exposure to pervanadate causes cysteine to cysteic acid oxidation of Ran and several other proteins and Ran-K8/K18 association. In cells, stabilization of oxidized Ran by proteasome inhibition promotes Ran-keratin interaction. Keratin sequestration of oxidized Ran may provide a back-up protective mechanism in some cases of oxidative injury.


Assuntos
Queratinas/química , Oxigênio/metabolismo , Vanadatos/farmacologia , Proteína ran de Ligação ao GTP/química , Actinas/química , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Sistema Livre de Células , Cisteína/química , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Espectrometria de Massas , Modelos Biológicos , Mutação , Fosforilação , Inibidores de Proteassoma , Ligação Proteica , Proteômica , Tirosina/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA