Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 657: 971-981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096780

RESUMO

HYPOTHESIS: Enveloped viruses are pivotal in causing various illnesses, including influenza and COVID-19. The antimicrobial peptide LL-37, a critical part of the human innate immune system, exhibits potential as an antiviral agent capable of thwarting these viral threats. Its mode of action involves versatile and non-specific interactions that culminate in dismantling the viral envelope, ultimately rendering the viruses inert. However, the exact mechanism of action is not yet understood. EXPERIMENTS: Here, the mechanism of LL-37 triggered changes in the structure and function of an enveloped virus is investigated. The bacteriophage "Phi6" is used as a surrogate for pathogenic enveloped viruses. Small angle X-ray and neutron scattering combined with light scattering techniques demonstrate that LL-37 actively integrates into the virus's lipid envelope. FINDINGS: LL-37 addition to Phi6 leads to curvature modification in the lipid bilayer, ultimately separating the envelope from the nucleocapsid. Additional biological assays confirm the loss of virus infectivity in the presence of LL-37, which coincides with the structural transformations. The results provide a fundamental understanding of the structure-activity relationship related to enveloped viruses. The knowledge of peptide-virus interactions can guide the design of future peptide-based antiviral drugs and therapies.


Assuntos
Peptídeos Antimicrobianos , Vírus , Humanos , Antivirais/farmacologia , Peptídeos/farmacologia , Bicamadas Lipídicas/química
2.
Adv Healthc Mater ; 12(13): e2203297, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36717365

RESUMO

Stem cells are known to sense and respond to the mechanical properties of biomaterials. In turn, cells exert forces on their environment that can lead to striking changes in shape, size and contraction of associated tissues, and may result in mechanical disruption and functional failure. However, no study has so far correlated stem cell phenotype and biomaterials toughness. Indeed, disentangling toughness-mediated cell response from other mechanosensing processes has remained elusive as it is particularly challenging to uncouple Youngs' or shear moduli from toughness, within a range relevant to cell-generated forces. In this report, it is shown how the design of the macromolecular architecture of polymer nanosheets regulates interfacial toughness, independently of interfacial shear storage modulus, and how this controls the expansion of mesenchymal stem cells at liquid interfaces. The viscoelasticity and toughness of poly(l-lysine) nanosheets assembled at liquid-liquid interfaces is characterised via interfacial shear rheology. The local (microscale) mechanics of nanosheets are characterised via magnetic tweezer-assisted interfacial microrheology and the thickness of these assemblies is determined from in situ ellipsometry. Finally, the response of mesenchymal stem cells to adhesion and culture at corresponding interfaces is investigated via immunostaining and confocal microscopy.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Materiais Biocompatíveis/metabolismo
3.
ACS Appl Mater Interfaces ; 14(43): 48449-48463, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36271846

RESUMO

Considering the broad therapeutic potential of omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA), here we study the effect of PEGylation of DHA-incorporated hexosomes on their physicochemical characteristics and biodistribution following intravenous injection into mice. Hexosomes were formed from phosphatidylglycerol and DHA with a weight ratio of 3:2. PEGylation was achieved through the incorporation of either d-α-tocopheryl succinate poly(ethylene glycol)2000 (TPGS-mPEG2000) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol)2000 (DSPE-mPEG2000) at a concentration of 1.5 wt %. Nanoparticle tracking analysis, synchrotron small-angle scattering, and cryo-transmission electron microscopy were employed to characterize the nanodispersions. The results show that PEGylated lipids induce a structural transition from an inverse hexagonal (H2) phase inside the nanoparticles (hexosomes) to a lamellar (Lα) phase (vesicles). We also followed the effect of mouse plasma on the nanodispersion size distribution, number, and morphology because changes brought by plasma constituents could regulate the in vivo performance of intravenously injected nanodispersions. For comparative biodistribution studies, fluorescently labeled nanodispersions of equivalent quantum yields were injected intravenously into healthy mice. TPGS-mPEG2000-induced vesicles were most effective in avoiding hepatosplenic clearance at early time points. In an orthotopic xenograft murine model of glioblastoma, TPGS-mPEG2000-induced vesicles also showed improved localization to the brain compared with native hexosomes. We discuss these observations and their implications for the future design of injectable lyotropic nonlamellar liquid crystalline drug delivery nanosystems for therapeutic interventions of brain and liver diseases.


Assuntos
Ácidos Docosa-Hexaenoicos , Nanopartículas , Humanos , Animais , Camundongos , Fosfatidilgliceróis , Distribuição Tecidual , Polietilenoglicóis/química , Nanopartículas/química , alfa-Tocoferol , Succinatos
4.
Front Immunol ; 13: 830290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300343

RESUMO

Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.


Assuntos
Mamíferos , Animais , Citoplasma/metabolismo , Granzimas/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Perforina
5.
J Colloid Interface Sci ; 606(Pt 1): 464-479, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399363

RESUMO

Lyotropic non-lamellar liquid crystalline (LLC) nanoparticles, with their tunable structural features and capability of loading a wide range of drugs and reporter probes, are emerging as versatile injectable nanopharmaceuticals. Secondary emulsifiers, such as Pluronic block copolymers, are commonly used for colloidal stabilization of LLC nanoparticles, but their inclusion often compromises the biological safety (e.g., poor hemocompatibility and enhanced cytotoxicity) of the formulation. Here, we introduce a library of colloidally stable, structurally tunable, and pH-responsive lamellar and non-lamellar liquid crystalline nanoparticles from binary mixtures of a phospholipid (phosphatidylglycerol) and three types of omega-3 fatty acids (ω-3 PUFAs), prepared in the absence of a secondary emulsifier and organic solvents. We study formulation size distribution, morphological heterogeneity, and the arrangement of their internal self-assembled architectures by nanoparticle tracking analysis, synchrotron small-angle X-ray scattering, and cryo-transmission electron microscopy. The results show the influence of type and concentration of ω-3 PUFAs in nanoparticle structural transitions spanning from a lamellar (Lα) phase to inverse discontinuous (micellar) cubic Fd3m and hexagonal phase (H2) phases, respectively. We further report on cell-culture medium-dependent dynamic fluctuations in nanoparticle size, number and morphology, and simultaneously monitor uptake kinetics in two human cell lines. We discuss the role of these multiparametric biophysical transformations on nanoparticle-cell interaction kinetics and internalization mechanisms. Collectively, our findings contribute to the understanding of fundamental steps that are imperative for improved engineering of LLC nanoparticles with necessary attributes for pharmaceutical development.


Assuntos
Ácidos Graxos Ômega-3 , Cristais Líquidos , Nanopartículas , Humanos , Micelas , Fosfolipídeos
6.
J Colloid Interface Sci ; 574: 430-440, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344233

RESUMO

HYPOTHESIS: The development of advanced oral delivery systems for bioactive compounds requires the fundamental understanding of the digestion process within the gastrointestinal tract. Towards this goal, dynamic invitro digestion models, capable of characterising the molecular as well as colloidal aspects of food, together with their biological interactions with relevant invitro cell culture models, are essential. EXPERIMENTS: In this study, we demonstrate a novel digestion model that combines flow-through time resolved small angle X-ray scattering (SAXS) with an invitro Caco-2/HT-29 cell co-culture model that also contained a mucus layer. This set-up allows the dynamic insitu characterisation of colloidal structures and their transport across a viable intestinal cell layer during simulated digestion. FINDINGS: An integrated online SAXS - invitro cell co-culture model was developed and applied to study the digestion of nature's own emulsion, milk. The impact of the invitro cell culture on the digestion-triggered formation and evolution of highly ordered nanostructures in milk is demonstrated. Reported is also the crucial role of the mucus layer on top of the cell layer, protecting the cells from degradation by digestive juice components such as lipase. The novel model can open unique possibilities for the dynamic investigation of colloidal structure formation during lipid digestion and their effect on the uptake of bioactive molecules by the cells.


Assuntos
Intestino Delgado/citologia , Intestino Delgado/metabolismo , Leite/metabolismo , Modelos Biológicos , Nanoestruturas/química , Animais , Células CACO-2 , Técnicas de Cocultura , Células HT29 , Humanos , Leite/química , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
7.
Artigo em Inglês | MEDLINE | ID: mdl-31867316

RESUMO

Krill oil represents an important alternative natural source of omega-3 (ω-3) polyunsaturated fatty acids (PUFAs). Considering the beneficial health effects of these essential fatty acids, particularly in various disorders including cancer, cardiovascular, and inflammation diseases, it is of paramount importance to gain insight into the digestibility of krill oil. In this work, we study the fate of krill oil-in-water emulsion, stabilized by sodium caseinate, during lipolysis by coupling time-resolved synchrotron small-angle X-ray scattering (SAXS) to flow-through lipolysis model. For gaining further insight into the effect of ω-3 PUFA-containing oil type on the dynamic structural features occurring during lipolysis, two additional astaxanthin oil-in-water emulsions, stabilized using either sodium caseinate or citrem, were subjected to lipolysis under identical experimental conditions. In addition to the difference in lipid composition in both oils, ω-3 PUFAs in astaxanthin oil, similar to fish oil, exist in the form of triacylglycerols; whereas most of those in krill oil are bound to phospholipids. SAXS showed the formation of highly ordered nanostructures on exposure of these food emulsions to the lipolysis medium: the detection of a biphasic feature of coexisting inverse hexagonal (H2) and lamellar (Lα) liquid crystalline phases in the digested krill oil droplets' interiors, as compared to a neat Lα phase in the digested astaxanthin oil droplets. We discuss the dynamic phase behavior and describe the suggested important role of these phases in facilitating the delivery of nutrients throughout the body. In addition, the potential implication in the development of food and drug nanocarriers is briefly described.

8.
Langmuir ; 35(24): 7954-7961, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31150248

RESUMO

pH-responsive lipid nanocarriers have the potential to selectively target the acidic extracellular pH environment of cancer tissues and may further improve the efficacy of chemotherapeutics by minimizing their toxic side-effects. Here, we present the design and characterization of pH-sensitive nano-self-assemblies of the poorly water-soluble anticancer drug 2-hydroxyoleic acid (2OHOA) with glycerol monooleate (GMO). pH-triggered nanostructural transformations from 2OHOA/GMO nanoparticles with an internal inverse hexagonal structure (hexosomes) at pH around 2.0-3.0, via nanocarriers with an internal inverse bicontinuous cubic structure (cubosomes) at pH 2.0-4.5, to vesicles at pH 4.5-7.4 were observed with synchrotron small-angle X-ray scattering, and cryogenic transmission electron microscopy. ζ-potential measurements highlight that the pH-driven deprotonation of the carboxylic group of 2OHOA, and the resulting charge-repulsions at the lipid-water interface account for these nanostructural alterations. The study provides detailed insight into the pH-dependent self-assembly of 2OHOA with GMO in excess buffer at physiologically relevant pH values, and discusses the effects of pH alterations on modulating their nanostructure. The results may guide the further development of pH-responsive anticancer nanocarriers for the targeted delivery of chemotherapeutics to the local microenvironment of tumor cells.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Nanoestruturas/química , Ácidos Oleicos/química , Concentração de Íons de Hidrogênio , Água/química
9.
Phys Chem Chem Phys ; 20(37): 23928-23941, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30209464

RESUMO

The attractiveness of new omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglycerides (MAGs) lies in the amphiphilic nature and the beneficial health effects as PUFA precursors in various disorders including cancer, pulmonary hypertension, and inflammatory diseases. For exploring the potential therapeutic applications of these new amphiphilic lipids, particularly as main lipid constituents in the development of nanocarriers for delivery of drugs and PUFAs, it is of paramount importance to gain insight into their self-assembly behavior on exposure to excess water. This work describes the structural characteristics of self-assemblies based on two newly synthesized MAGs, namely docosahexaenoic acid (MAG-DHA) and docosapentaenoic acid (MAG-DPA) monoglycerides, on exposure to excess water. We found that both lipids tend to form a dominant inverse hexagonal (H2) phase in excess water at 25 °C and a temperature-triggered structural transition to an inverse micellar solution (L2 phase) is detected similar to that recently reported (A. Yaghmur et al., Langmuir, 2017, 33, 14045-14057) for eicosapentaenoic acid monoglyceride (MAG-EPA). An experimental SAXS structural evaluation study on the temperature-dependent behavior of these new monoglycerides is provided, and the effects of unsaturation degree and fatty acyl chain length on the self-assembled structural features in excess water and on the H2-L2 phase transition temperature are discussed. In addition, hexosomes stabilized by using the triblock copolymer F127 and the food-grade emulsifier citrem were investigated to gain insights into the effects of stabilizer and temperature on the internal nanostructure. These nanoparticles are attractive for use in the development of nanocarriers for delivering drugs and/or nutritional compounds as the beneficial health effects of ω-3 PUFA monoglycerides can be combined with those of loaded therapeutic agents or nutraceuticals.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Ômega-3/química , Ácidos Graxos Insaturados/química , Monoglicerídeos/química , Estrutura Molecular
10.
Langmuir ; 33(49): 14045-14057, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29136473

RESUMO

Recent studies demonstrated the potential therapeutic use of newly synthesized omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglycerides owing to their beneficial health effects in various disorders including cancer and inflammation diseases. To date, the research was mainly focused on exploring the biological effects of these functional lipids. However, to the best of our knowledge, there is no report on the hydration-mediated self assembly of these lipids that leads to the formation of nanostructures, which are attractive for use as vehicles for the delivery of drugs and functional foods. In the present study, we investigated the temperature-composition phase behaviour of eicosapentaenoic acid monoglyceride (MAG-EPA), which is one of the most investigated ω-3 PUFA monoglycerides, during a heating-cooling cycle in the temperature range of 5-60 °C. Experimental synchrotron small-angle X-ray scattering (SAXS) evidence on the formation of a dominant inverse hexagonal (H2) lyotropic liquid crystalline phase and its temperature-induced transition to an inverse micellar solution (L2 phase) is presented for the fully hydrated bulk MAG-EPA system and its corresponding dispersion. We produced colloidal MAG-EPA hexosomes with an internal inverse hexagonal (H2) lyotropic crystalline phase in the presence of F127, a well-known polymeric stabilizer, or citrem, which is a negatively charged food-grade emulsifier. In this work, we report also on the formation of MAG-EPA hexosomes by vortexing MAG-EPA in excess aqueous medium containing F127 at room temperature. This low-energy emulsification method is different than most reported studies in the literature that have demonstrated the need for using a high-energy input during the emulsification step or adding an organic solvent for the formation of such colloidal nonlamellar liquid crystalline dispersions. The designed nanoparticles hold promise for future drug and functional food delivery applications due to their unique structural properties and the potential health-promoting effects of MAG-EPA.

11.
Soft Matter ; 13(42): 7740-7752, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29043368

RESUMO

The beak of the Humboldt squid is a biocomposite material made solely of organic components - chitin and proteins - which exhibits 200-fold stiffness and hardness gradients from the soft base to the exceptionally hard tip (rostrum). The outstanding mechanical properties of the squid beak are achieved via controlled hydration and impregnation of the chitin-based scaffold by protein coacervates. Molecular-based understanding of these proteins is essential to mimic the natural beak material. Here, we present detailed studies of two histidine-rich beak proteins (HBP-1 and -2) that play central roles during beak bio-fabrication. We show that both proteins have the ability to self-coacervate, which is governed intrinsically by the sequence modularity of their C-terminus and extrinsically by pH and ionic strength. We demonstrate that HBPs possess dynamic structures in solution and achieve maximum folding in the coacervate state, and propose that their self-coacervation is driven by hydrophobic interactions following charge neutralization through salt-screening. Finally, we show that subtle differences in the modular repeats of HBPs result in significant changes in the rheological response of the coacervates. This knowledge may be exploited to design self-coacervating polypeptides for a wide range of engineering and biomedical applications, for example bio-inspired composite materials, smart hydrogels and adhesives, and biomedical implants.


Assuntos
Bico/química , Decapodiformes/anatomia & histologia , Proteínas/química , Animais , Quitina/química , Histidina/química , Conformação Proteica , Reologia
12.
J Phys Chem Lett ; 7(17): 3482-6, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27541048

RESUMO

Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures.


Assuntos
Anti-Infecciosos/uso terapêutico , Cristais Líquidos/química , Nanoestruturas/química , Peptídeos/química
13.
Langmuir ; 26(9): 6222-9, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20143786

RESUMO

The internal phase of monolinolein-based dispersions loaded with tetradecane or (R)-(+)-limonene was investigated as a function of the stabilizer content by small-angle X-ray scattering. Phase transitions at the colloidal scale were found in some of nanostructured aqueous dispersions by increasing the stabilizer content. For particles containing a bicontinuous cubic phase, a large increase of the stabilizer concentration promoted a liquid crystalline phase transition from the Pn3m to the Im3m cubic symmetry. The coexistence of both phases is observed in an intermediate stabilizer concentration range. For particles with an internal micellar cubic Fd3m symmetry, the internal structure changes in the isotropic fluid L(2) phase. In case of particles with an internal hexagonal phase (H(2) symmetry), the increasing amount of stabilizer did not alter the lattice parameter but decreased the size of the nanostructured domain. Moreover, we showed for hexagonal and emulsified micellar phase particles that the increase of the stabilizer content induced a strong decrease of the mean hydrodynamic size of the particles, allowing producing nanostructured lipid-based liquid crystalline particles down to a radius of 70 nm at the same energy input.


Assuntos
Glicerídeos/química , Cristais Líquidos/química , Óleos/química , Injeções , Micelas , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Langmuir ; 22(2): 517-21, 2006 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-16401095

RESUMO

In our recent work, we reported on the effect of varying temperature and solubilizing tetradecane (TC) on the structural transitions observed in dispersed particles based on the monolinolein (MLO)-water-TC system. At a given temperature, the addition of TC induces a transition of the internal structure from the bicontinuous cubic phase, Pn3m, to the reversed hexagonal, H2, and to the isotropic liquid phase (water-in-oil (W/O) microemulsions). Our present study focuses on the discovery of a Fd3m phase (reversed discontinuous micellar cubic), which is formed in the MLO-water-TC system at a specific TC/MLO weight ratio. It is situated between the H2 and the isotropic liquid phase (W/O microemulsion). Remarkably, it is not found in the absence of TC by increasing the temperature. The Fd3m structure was investigated in detail by means of small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The present work proves that the structural transformation in the dispersed particles from H2 (hexosomes) to the W/O microemulsion system (emulsified microemulsion (EME)) is indirect and it occurs gradually via an emulsified intermediate phase. Specifically, in addition to the nanostructured aqueous dispersions described above, we present new TC-loaded aqueous dispersions with a confined intermediate phase, which is a discontinuous micellar cubic phase of the symmetry Fd3m. We denoted this type of emulsified particles as "micellar cubosomes".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA