Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 15129-15142, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38720979

RESUMO

Artificial intelligence (AI) is being employed in brine mining to enhance the extraction of lithium, vital for the manufacturing of lithium-ion batteries, through improved recovery efficiencies and the reduction of energy consumption. An innovative approach was proposed combining Emotional Neural Networks (ENN) and Random Forest (RF) algorithms to elucidate the adsorption energy (AE) (kcal mol-1) of Li+ ions by utilizing crown ether (CE)-incorporated honeycomb 2D nanomaterials. The screening and feature engineering analysis of honeycomb-patterned 2D materials and individual CE were conducted through Density Functional Theory (DFT) and Gaussian 16 simulations. The selected honeycomb-patterned 2D materials encompass graphene, silicene, and hexagonal boron nitride, while the specific CEs evaluated are 15-crown-5 and 18-crown-6. The crown-passivated 2D surfaces held a significant adsorption site through van der Waals forces for efficient recovery of Li+ ions. ENN predicted the targeted adsorption sites with high precision and minimal deviation. The eTAI (XAI) based Shapley Additive exPlanations (SHAP) was also explored for insight into the feature importance of CE embedded 2D nanomaterials for the recovery of Li+ ions. The extreme gradient boosting algorithm (XGBoost) model demonstrated a RT-2-MAPE = 0.4618% and ENN-2-MAPE = 0.4839% for the feature engineering analysis. This research would be an insight into the AI-driven nanotechnology that presents a viable and sustainable approach for the extraction of natural resources through the application of brine mining.

2.
Langmuir ; 39(39): 13953-13967, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37729118

RESUMO

MXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of Ti3C2Tx MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes. The SPDMX membrane was tested for challenging surfactant-stabilized oil-in-water separation with an impressive efficiency of 98%. Moreover, an ultrahigh permeability of 1620 LMH/bar was also achieved. The sulfonation of PD helps in improving the antifouling characteristics of SPDMX by developing a strong hydration layer and enhancing the oleophobicity of the membrane. The underwater SPDMX membrane appeared superoleophobic with an oil contact angle of 153°, whereas the ceramic membrane exhibited an oil contact angle of 137°. The SPDMX membranes showed an improved flux recovery (31%) compared to the nonsulfonated counterpart. This work highlights the appropriate functionalization of MXene as a promising approach to developing MXene membranes with high permeation flux and better antifouling characteristics for oily wastewater treatment.

3.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615584

RESUMO

The separation of oil/water emulsions has attracted considerable attention for decades due to the negative environmental impacts brought by wastewater. Among the various membranes investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline. Meanwhile, the incorporation of wettable substrates during fabrication has significantly impacted the membrane performance by lowering the fouling propensity. Herein, we report the fabrication of an iron-containing porphyrin (hemin)-modified multi-walled carbon nanotube incorporated PVDF membrane (HA-MWCNT) to enhance fouling resistance and the effective separation of oil-in-water emulsions. The fabricated membrane was thoroughly investigated using the FTIR, SEM, EDX, AFM, and contact angle (CA) analysis. The HA-MWCNT membrane exhibited a water CA of 62° ± 0.5 and excellent pure water permeance of 300.5 L/m2h at 3.0 bar (400% increment), in contrast to the pristine PVDF, which recorded a CA of 82° ± 0.8 and water permeance of 59.9 L/m2h. The hydrophilic HA-MWCNT membrane further showed an excellent oil rejection of >99% in the transmembrane pressure range of 0.5−2.5 bar and a superb flux recovery ratio (FRR) of 82%. Meanwhile, the classical molecular dynamics (MD) simulations revealed that the HA-MWCNT membrane had greater solvent-accessible pores, which enhanced water permeance while blocking the hydrocarbons. The incorporation of the hemin-modified MWCNT is thus an excellent strategy and could be adopted in the design of advanced membranes for oil/water separation.


Assuntos
Nanotubos de Carbono , Purificação da Água , Emulsões , Hemina , Membranas Artificiais , Purificação da Água/métodos
4.
Chemosphere ; 308(Pt 3): 136531, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150483

RESUMO

The separation of the emulsified oil/water is one of the critical environmental challenges. The PVDF membranes have been found helpful for separation, but rapid fouling makes them less attractive in treating oil-in-water emulsions. The design of antifouling membranes has become an area of deep interest. Herein, developing a novel modified PVDF ultrafiltration membrane was reported by doping the pyrrole and solidifying it in a ferric-containing coagulation bath, resulting in a unique nanotextured PVDF membrane (CCB-Fe/PPnp-PVDF) to separate the oil/water emulsions. The resultant CCB-Fe/PPnp-PVDF membrane was thoroughly characterized using the FTIR, FE-SEM, EDX, mapping, AFM, and contact analyzer. The hydrophilicity of the CCB-Fe/PPnp-PVDF was substantially improved, and the water contact angle was reduced from 81Ö¯ ± 0.9Ö¯ to 44Ö¯ ± 1.7Ö¯. The CCB-Fe/PPnp-PVDF membrane flux increased by 121% compared to the pristine PVDF membrane, with high separation efficiency of 99%. The hydrophilic nanotextured surface of the CCB-Fe/PPnp-PVDF membrane showed good antifouling behavior, with a flux recovery ratio (FRR) of more than 96%. Irreversible flux was just less than 4%. The high flux recovery ratio indicated that the nanotextured surface produced by the Fe/PPnp had prevented the blockage of the membrane pores and compact cake layer formation, which makes it an excellent membrane for oil/water emulsion separation. This strategy can be adopted for designing advanced membranes for separation applications.


Assuntos
Membranas Artificiais , Purificação da Água , Emulsões , Polímeros de Fluorcarboneto , Polivinil , Pirróis , Purificação da Água/métodos
5.
Chem Rec ; 22(7): e202100320, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35189025

RESUMO

Oily wastewater has become one of the leading causes of environmental pollution. A massive quantity of oily wastewater is released from industries, oil spills, and routine activities, endangering the ecosystem's sustainability. Due to the enormous negative impact, researchers put strenuous efforts into developing a sustainable solution to treat oily wastewater. Microfiltration/ultrafiltration membranes are considered an efficient solution to treat oily wastewater due to their low cost, small footprint, facile operation, and high separation efficiencies. However, membranes severely fouled during the separation process due to oil's adsorption and cake layer formation, which shortens the membranes' life. This review has critically discussed the microfiltration/ultrafiltration membrane synthesizing methods and their emulsion's separation performance. In the end, key challenges and their possible solutions are highlighted to provide future direction to synthesize next-generation membranes.


Assuntos
Ultrafiltração , Purificação da Água , Ecossistema , Emulsões , Membranas Artificiais , Óleos , Ultrafiltração/métodos , Águas Residuárias , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA