Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eado1463, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758782

RESUMO

A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney. This effect is mediated through adenosine monophosphate-activated protein kinase (AMPK) and inactivation of mouse double minute 2 (MDM2) by caspase-2, leading to p53 accumulation and p21 induction. This was established using p53 and caspase-2 knockout mice and inhibitors to AMPK, p21, and caspase-2. In addition, senescence-associated secretory phenotype biomarkers were elevated in serum from mice on a KD and in plasma samples from patients on a KD clinical trial. Cellular senescence was eliminated by a senolytic and prevented by an intermittent KD. These results have important clinical implications, suggesting that the effects of a KD are contextual and likely require individual optimization.


Assuntos
Senescência Celular , Dieta Cetogênica , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Dieta Cetogênica/efeitos adversos , Camundongos Knockout , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Diabetes ; 73(7): 1167-1177, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656940

RESUMO

Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17ß-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.


Assuntos
Proteínas Quinases Ativadas por AMP , Nefropatias Diabéticas , Rim , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/prevenção & controle , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Camundongos Knockout , Fosforilação , Estradiol/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Diabetes Mellitus Experimental/metabolismo
3.
iScience ; 26(4): 106462, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091239

RESUMO

The Crabtree effect is defined as a rapid glucose-induced repression of mitochondrial oxidative metabolism and has been described in yeasts and tumor cells. Using plate-based respirometry, we identified the Crabtree effect in normal (non-tumor) kidney proximal tubule epithelial cells (PTEC) but not in other kidney cells (podocytes or mesangial cells) or mammalian cells (C2C12 myoblasts). Glucose-induced repression of respiration was prevented by reducing glycolysis at the proximal step with 2-deoxyglucose and partially reversed by pyruvate. The late-stage glycolytic intermediates glyceraldehyde 3-phosphate, 3-phosphoglycerate, and phosphoenolpyruvate, but not the early-stage glycolytic intermediates or lactate, inhibited respiration in permeabilized PTEC and kidney cortex mitochondria, mimicking the Crabtree effect. Studies in diabetic mice indicated a pattern of increased late-stage glycolytic intermediates consistent with a similar pattern occurring in vivo. Our results show the unique presence of the Crabtree effect in kidney PTEC and identify the major mediators of this effect.

4.
J Clin Endocrinol Metab ; 105(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32575117

RESUMO

CONTEXT: TMEM127 is a poorly known tumor suppressor gene associated with pheochromocytomas, paragangliomas, and renal carcinomas. Our incomplete understanding of TMEM127 function has limited our ability to predict variant pathogenicity. PURPOSE: To better understand the function of the transmembrane protein TMEM127 we undertook cellular and molecular evaluation of patient-derived germline variants. DESIGN: Subcellular localization and steady-state levels of tumor-associated, transiently expressed TMEM127 variants were compared to the wild-type protein using immunofluorescence and immunoblot analysis, respectively, in cells genetically modified to lack endogenous TMEM127. Membrane topology and endocytic mechanisms were also assessed. RESULTS: We identified 3 subgroups of mutations and determined that 71% of the variants studied are pathogenic or likely pathogenic through loss of membrane-binding ability, stability, and/or internalization capability. Investigation into an N-terminal cluster of missense variants uncovered a previously unrecognized transmembrane domain, indicating that TMEM127 is a 4- transmembrane, not a 3-transmembrane domain-containing protein. Additionally, a C-terminal variant with predominant plasma membrane localization revealed an atypical, extended acidic, dileucine-based motif required for TMEM127 internalization through clathrin-mediated endocytosis. CONCLUSION: We characterized the functional deficits of several germline TMEM127 variants and identified novel structure-function features of TMEM127. These findings will assist in determining pathogenicity of TMEM127 variants and will help guide future studies investigating the cellular role of TMEM127.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Substituição de Aminoácidos , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Proteínas de Membrana/química , Mutagênese Sítio-Dirigida , Mutação/fisiologia , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/genética , Feocromocitoma/metabolismo , Transporte Proteico/genética , Distribuição Tecidual
5.
Sci Rep ; 6: 20230, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847607

RESUMO

Adult neural stem cells (aNSCs) are relatively quiescent populations that give rise to distinct neuronal subtypes throughout life, yet, at a very low rate and restricted differentiation potential. Thus, identifying the molecular mechanisms that control their cellular expansion is critical for regeneration after brain injury. Loss of the Retinoblastoma protein, Rb, leads to several defects in cell cycle as well as neuronal differentiation and migration during brain development. Here, we investigated the role of Rb during adult neurogenesis in the olfactory bulb (OB) by inducing its temporal deletion in aNSCs and progenitors. Loss of Rb was associated with increased proliferation of adult progenitors in the subventricular zone (SVZ) and the rostral migratory stream (RMS) but did not alter self-renewal of aNSCs or neuroblasts subsequent migration and terminal differentiation. Hence, one month after their birth, Rb-null neuroblasts were able to differentiate into distinct subtypes of GABAergic OB interneurons but were gradually lost after 3 months. Similarly, Rb controlled aNSCs/progenitors proliferation in vitro without affecting their differentiation capacity. This enhanced SVZ/OB neurogenesis associated with loss of Rb was only transient and negatively affected by increased apoptosis indicating a critical requirement for Rb in the long-term survival of adult-born OB interneurons.


Assuntos
Bulbo Olfatório/citologia , Proteína do Retinoblastoma/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteína do Retinoblastoma/genética , Tamoxifeno/farmacologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA