Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Ther Oncol ; 32(2): 200800, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38706989

RESUMO

Breast cancer remains a significant global health concern, emphasizing the critical need for effective treatment strategies, especially targeted therapies. This systematic review summarizes the findings from in vitro and in vivo studies regarding the therapeutic potential of exosomes as drug delivery platforms in the field of breast cancer treatment. A comprehensive search was conducted across bibliographic datasets, including Web of Science, PubMed, and Scopus, using relevant queries from several related published articles and the Medical Subject Headings Database. Then, all morphological, biomechanical, histopathological, and cellular-molecular outcomes were systematically collected. A total of 30 studies were identified based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. These studies underwent assessment using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias assessment tool. The results indicate that exosomes exhibit promise as effective drug delivery platforms, capable of hindering cancer cell viability, proliferation, migration, and angiogenesis. However, a comprehensive assessment is challenging due to some studies deviating from guidelines and having incomplete methodology. Addressing these, future studies should detail methodologies, optimize dosing, and enhance exosome production. Standardization in reporting, consistent protocols, and exploration of alternative sources are crucial.

2.
Iran Biomed J ; 28(2&3): 132-9, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38468372

RESUMO

Background: : Exosomal RNAs (ExoRNAs) offer valuable insights into their cellular origin. ExoRNA studies were faced with challenges in obtaining sufficient amounts of high-quality RNA. Herein, we aimed to compare three traditional exosome isolation methods to introduce an appropriate strategy to extract RNA from cancer-derived exosomes for further RNA analysis. Methods: Exosomes were isolated through ultracentrifugation, precipitation kit, and size exclusion column chromatography, and then characterized by dynamic light scattering and transmission electron microscopy, followed by extracting total RNA. The quality and quantity of the extracted RNAs were assessed by a NanoDrop and 2.5% agarose gel electrophoresis. Results: Extracted exosomes displayed a similar range of size and morphology. We found that polyethylene glycol-precipitation method resulted in a higher RNA yield with a 260/280 ratio of 1.9. The obtained exoRNA appeared as a smear in the agarose gel, indicative of small exoRNAs. Conclusion: We provide researchers a suitable approach to isolate exosomes based on yield and purity of exoRNA.


Assuntos
Exossomos , Polietilenoglicóis , RNA , Exossomos/metabolismo , Exossomos/química , Humanos , Polietilenoglicóis/química , RNA/isolamento & purificação , Ultracentrifugação/métodos , Linhagem Celular Tumoral
3.
Acta Trop ; 254: 107190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508372

RESUMO

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Assuntos
Antimônio , Antiprotozoários , Resistência a Medicamentos , Glutationa , Glutationa/análogos & derivados , Leishmania tropica , Espermidina/análogos & derivados , Leishmania tropica/genética , Leishmania tropica/efeitos dos fármacos , Resistência a Medicamentos/genética , Animais , Antimônio/farmacologia , Humanos , Antiprotozoários/farmacologia , Camundongos , Glutationa/metabolismo , Linhagem Celular , Macrófagos/parasitologia , Concentração Inibidora 50 , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/tratamento farmacológico , Feminino , Adulto , Testes de Sensibilidade Parasitária , Masculino , Reação em Cadeia da Polimerase em Tempo Real
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5119-5129, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38240779

RESUMO

Triple-negative breast cancer is a subtype of breast cancer with poor clinical outcome, and currently, no effective targeted therapies are available. Since cancer develops owing to deregulation of apoptosis, employing therapeutic strategies with the ability to target the molecules involved in apoptosis induction would provide a valid approach to hinder tumor progression. Hydrazide-hydrazones and oxamide molecules are the subject of intense studies due to their anticancer effects via apoptosis induction. In the present study, we attempted to elucidate the mechanism of action of a synthesized compound (compound A) in inducing cell death. Annexin/PI and Western blotting analyses, DAPI staining, mitochondrial membrane potential probe, and flow cytometry were applied for the in vitro evaluations. 4T1 syngeneic mouse model and immunohistochemistry were used for the in vivo assessments. Compound A caused cell death by inducing apoptosis in MDA-MB-231 cells in a mitochondrial-dependent manner at high concentrations after 72 h of incubation. Compound A also impeded tumor growth in a 4T1 syngeneic mouse model as evidenced by hematoxylin and eosin staining of the tumors. Furthermore, it significantly diminished the expression of pro-caspase-3, Ki67, and CD31 markers in the tumor sections. Conclusively, this study for the first time reports the anti-cancer efficacy of compound A in both in vitro and in vivo models and its potential in the treatment of triple-negative breast cancer.


Assuntos
Antineoplásicos , Apoptose , Hidrazonas , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Hidrazonas/farmacologia , Hidrazonas/síntese química , Hidrazonas/uso terapêutico , Feminino , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Camundongos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
5.
Res Pharm Sci ; 18(1): 24-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846733

RESUMO

Background and purpose: Considering various studies implying anticancer activity of the hydrazone and oxamide derivatives through different mechanisms such as kinases and calpain inhibition, herein, we report the synthesis, characterization, and evaluation of the antiproliferative effect of a series of hydrazones bearing oxamide moiety compounds (7a-7n) against a panel of cancer cell lines to explore a novel and promising anticancer agent (7k). Experimental approach: Chemical structures of the synthesized compounds were confirmed by FTIR, 1H-NMR, 13C-NMR, and mass spectra. The antiproliferative activity and cell cycle progression of the target compound were investigated using the MTT assay and flow cytometry. Findings/Results: Compound 7k with 2-hydroxybenzylidene structure was found to have a significant in vitro anti-proliferative influence on MDA-MB-231 (human adenocarcinoma breast cancer) and 4T1 (mouse mammary tumor) cells as the model of triple-negative breast cancer, with the IC50-72h values of 7.73 ± 1.05 and 1.82 ± 1.14 µM, respectively. Following 72-h incubation with compound 7k, it caused MDA-MB-231 cell death through G1/S cell cycle arrest at high concentrations (12 and 16 µM). Conclusion and implications: Conclusively, this study for the first time reports the anti-proliferative efficacy of compound 7k possessing 2-hydroxyphenyl moiety, which may serve as a potent candidate in triple-negative breast cancer treatment.

6.
BMC Chem ; 16(1): 81, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320042

RESUMO

BACKGROUND: Compounds possessing urea/thiourea moiety have a wide range of biological properties including anticancer activity. On the other hand, taking advantage of the low toxicity and structural diversity of hydrazone derivatives, they are presently being considered for designing chemical compounds with hydrazone moiety in the field of cancer treatment. With this in mind, a series of novel ureido/thioureido derivatives possessing a hydrazone moiety bearing nitro and chloro substituents (4a-4i) have been designed, synthesized, characterized and evaluated for their in vitro cytotoxic effect on HT-29 human colon carcinoma and HepG2 hepatocarcinoma cell lines. RESULTS: Two compounds (4c and 4e) having the chloro phenylurea group hybridized with phenyl hydrazone bearing nitro or chloro moieties demonstrated potent anticancer effect with the IC50 values between 2.2 and 4.8 µM at 72 h. The mechanism of action of compound 4c was revealed in hepatocellular carcinoma cells as an inducer of apoptosis in a caspase-independent pathway. CONCLUSION: Taken together, the current work presented compound 4c as a potential lead compound in developing future hepatocellular carcinoma chemotherapy drugs. METHODS: The compounds were synthesized and then characterized by physical and spectral data (FT-IR, 1H-NMR, 13C-NMR, Mass). The anticancer activity was assessed using MTT assay, flowcytometry, annexin-V, DAPI staining and Western blot analysis.

7.
Life Sci ; 304: 120701, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690107

RESUMO

AIMS: Doxorubicin is a potent and broad-spectrum antineoplastic medication prescribed for both solid and hematological malignancies. Despite its value, the clinical use of doxorubicin is limited due to cardio-oncologic complication and cardiotoxic adverse effect. Among the mechanisms proposed for its toxicity, mitochondrial dysfunction has gained more attention. Therefore, if damaged mitochondria are replaced by normal efficient mitochondria, cardiac toxicity is expected to be reduced or improved. In this way, we have studied the efficiency of transplantation of freshly isolated rat liver mitochondria in neonatal rat cardiomyocytes that have been damaged by doxorubicin. MATERIALS AND METHODS: For this purpose, isolated mitochondria were characterized using mitochondrial complex II, membrane potential and swelling evaluations, and also fluorescence and electron microscopy. Afterward, the effect of mitotherapy on the damaged cardiomyocytes was investigated by using annexin V/PI staining, MTT, ROS, MMP, lipid peroxidation, GSH and ATP evaluations. KEY FINDINGS AND SIGNIFICANCE: Transplanted mitochondria could remarkably enter the neonatal rat cardiomyocytes. Addition of mitochondria to the damaged cardiomyocytes, significantly increased cell viability by reducing the level of reactive oxygen species and lipid peroxidation, increasing of ∆Ψ, ATP and GSH contents and decreasing of apoptotic and necrotic cell death. Our results showed that mitotherapy has a significant restorative effect on cardiotoxicity induced by doxorubicin, which promises a better future to reduce the complications of cancer treatment.


Assuntos
Cardiotoxicidade , Doxorrubicina , Trifosfato de Adenosina/metabolismo , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
8.
J Mol Model ; 28(5): 113, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381900

RESUMO

There is a growing interest in designing a nanocarrier containing an EGFR targeting affibody to direct toward cancer cells. Here, cytolysin A was cloned at the N-terminus of ZEGFR:1907 affibody to guarantee its surface presentation on the OMVs while targeting the epidermal growth factor receptors (EGFRs). A separate construct including a fusogenic peptide (GALA) was also designed for the endosomal escape of the nanocarrier. Binding of the two constructs ClyA-affiEGFR and ClyA-affiEGFR-GALA to domain III of EGFR was investigated using molecular docking and molecular dynamic simulations. The higher stability of the ClyA-affiEGFR-GALA/EGFR as compared to the ClyA-affiEGFR/EGFR complex was evident. The ClyA-affiEGFR-GALA structure showed a higher RMSD during the first half of the simulation time implying a much less stable behavior. Plateau state of the radius of gyration plot of ClyA-affiEGFR-GALA confirmed a well-folded structure in the presence of the GALA sequence. Solvent accessible surface area for both proteins was in the same range. The data obtained from hydrogen bond analysis revealed a more equilibrated and stable form of the ClyA-affiEGFR-GALA structure upon interaction with EGFR. The data provided here was a requisite for our biological evaluation of the synthesized constructs as a component of a novel drug delivery system.


Assuntos
Receptores ErbB , Peptídeos , Receptores ErbB/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/química
9.
J Biomol Struct Dyn ; 40(10): 4440-4450, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33351722

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is an important therapeutic target for diseases such as osteoporosis, Alzheimer, cancer, and neurodegenerative disease. Computational methods such as ligand-based and structure-based virtual screening have been introduced as an extremely efficient and accurate tool for finding new drug targets and candidates. In this study, we aimed to screen the National Cancer Institute (NCI) Diversity Set II and parts of the ZINC database by virtual screening to identify potential and safe compounds that can inhibit the LRP6 protein. By utilizing various screening methods such as rigid and flexible molecular docking and Lipinski's rule of five, we identified 10 potential compounds. Then, their validity was further tested by molecular dynamics simulation and MMPBSA binding free energy calculations. Eventually, it was concluded that ZINC03954520, ZINC01729523, ZINC03898665, ZINC13152226, ZINC26730911 and ZINC01069082 compounds can be potential drug compounds for inhibiting LRP6 protein. These compounds in complex with ß-propeller domains of LRP6 showed that they are capable of altering the backbone of these domains and interfere with their structural dynamics which may lead to the inhibition of the signal transmission. Communicated by Ramaswamy H. Sarma.


Assuntos
Doenças Neurodegenerativas , Humanos , Lipoproteínas LDL , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
10.
Front Pharmacol ; 12: 719289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867325

RESUMO

Bacterial outer membrane vesicles (OMVs) have recently drawn a great deal of attention due to their therapeutic efficiency and ability to target specific cells. In the present study, we sought to probe engineered OMVs as novel and promising carriers to target breast cancer cells. Following the fusion of the affiEGFR-GALA structure to the C-terminal of ClyA as an anchor protein, the ClyA-affiEGFR-GALA construct was successfully expressed on the surface of ∆msbB/∆pagP E. coli W3110-derived OMVs. Morphological features of the engineered and wild-type OMVs were identical. The engineered OMVs induced no endotoxicity, cytotoxicity, or immunogenicity, indicating the safety of their application. These OMVs could specifically bind to EGF receptors of MDA-MB-468 cells expressing high levels of EGFR and not to those with low levels of EGFR (HEK293T cells). Interestingly, despite a lower binding affinity of the engineered OMVs relative to the positive control Cetuximab, it was strong enough to identify these cells. Moreover, confocal microscopy revealed no uptake of the modified OMVs by the EGFR-overexpressing cells in the presence of EGFR competitors. These results suggest that OMVs might internalize into the cells with EGF receptors, as no OMVs entered the cells with any EGFR expression or those pretreated with EGF or Cetuximab. Regarding the EGFR-binding affinity of the engineered OMVs and their cellular uptake, they are presented here as a potential carrier for cell-specific drug delivery to treat a wide variety of cancer cells. Interestingly, the engineered OMVs are capable of reaching the cytoplasm while escaping the endosome due to the incorporation of a fusogenic GALA peptide in the construct.

11.
Cell J ; 23(4): 406-413, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455715

RESUMO

OBJECTIVE: Breast cancer (BC) still remains an imperative clinical issue, despite advances in the diagnosis, prognosis and treatment modalities of this malignancy. Hence, progress has been made to identify non-invasive, high sensitive and specific biomarkers. Since immune system affects development of breast cancer, peripheral blood mononuclear cells (PBMCs) -a subpopulation of immune cells- can be considered as a promising tool in the field of BC biomarker research. In the current study, we initially attempted to use concept of the present shared biomarkers in solid tumors and systemic immune profile and then evaluate correlation of these biomarkers to clinical use in cancer research. MATERIALS AND METHODS: In this experimental study, available microarray gene expression datasets of BC as well as the related PBMCs were retrieved and downloaded from the Gene Expression Omnibus (GEO) database, followed by analysis using GEO2R along with affylmGUI, a R-based package, to obtain differentially expressed genes (DEGs). Signature genes from 20 types of cancer were also applied to validate DEGs. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was carried out to assess mRNA level of CCNB2 in PBMC of the BC patients and healthy subjects. RESULTS: DEGs analysis for the transcription profile of BC cells and PBMCs showed two shared targets, CCNB2 and PGK1. Validation with systems biology using reweighted 20 types of cancer signature genes revealed that CCNB2 is the only common target in BC and its related PBMCs, which was further validated by qRT-PCR implying a significant increase in the level of CCNB2 in the BC patients. CONCLUSION: Results of this study demonstrated that PBMCs are affected by BC cells and CCNB2 may be of value as a diagnostic biomarker for breast cancer. However, verification would require future detailed experimental plans.

12.
Mol Pharmacol ; 99(5): 308-318, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33632781

RESUMO

Celecoxib, or Celebrex, a nonsteroidal anti-inflammatory drug, is one of the most common medicines for treating inflammatory diseases. Recently, it has been shown that celecoxib is associated with implications in complex diseases, such as Alzheimer disease and cancer as well as with cardiovascular risk assessment and toxicity, suggesting that celecoxib may affect multiple unknown targets. In this project, we detected targets of celecoxib within the nervous system using a label-free thermal proteome profiling method. First, proteins of the rat hippocampus were treated with multiple drug concentrations and temperatures. Next, we separated the soluble proteins from the denatured and sedimented total protein load by ultracentrifugation. Subsequently, the soluble proteins were analyzed by nano-liquid chromatography tandem mass spectrometry to determine the identity of the celecoxib-targeted proteins based on structural changes by thermal stability variation of targeted proteins toward higher solubility in the higher temperatures. In the analysis of the soluble protein extract at 67°C, 44 proteins were uniquely detected in drug-treated samples out of all 478 identified proteins at this temperature. Ras-associated binding protein 4a, 1 out of these 44 proteins, has previously been reported as one of the celecoxib off targets in the rat central nervous system. Furthermore, we provide more molecular details through biomedical enrichment analysis to explore the potential role of all detected proteins in the biologic systems. We show that the determined proteins play a role in the signaling pathways related to neurodegenerative disease-and cancer pathways. Finally, we fill out molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets. SIGNIFICANCE STATEMENT: This study determined 44 off-target proteins of celecoxib, a nonsteroidal anti-inflammatory and one of the most common medicines for treating inflammatory diseases. It shows that these proteins play a role in the signaling pathways related to neurodegenerative disease and cancer pathways. Finally, the study provides molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Celecoxib/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , Animais , Cromatografia Líquida/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Ratos , Solubilidade/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Temperatura
13.
Iran Biomed J ; 25(1): 1-7, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129234

RESUMO

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, immune cells (both native and adaptive) can reciprocally influence the tumor cells features, promote EMT and negatively regulate the anticancer immune response. In this review, we look over the role of EMT in crosstalk between tumor cells and the immune system, with specific emphasis on breast tumors. Finally, we suggest that understanding the role of immune cells in cancer progression could create new opportunities for diagnostic and therapeutic interventions in cancer combination therapy.


Assuntos
Neoplasias da Mama/fisiopatologia , Comunicação Celular , Transição Epitelial-Mesenquimal , Leucócitos , Células Mieloides , Microambiente Tumoral , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Células Matadoras Naturais , Linfócitos do Interstício Tumoral , Macrófagos , Células Supressoras Mieloides , Neutrófilos
14.
BMC Cancer ; 20(1): 1126, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218315

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

15.
Iran J Pharm Res ; 19(2): 145-152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224219

RESUMO

Prognosis of metastatic breast cancer is very poor which urges the necessity to develop novel potential drug candidates. We assessed two compounds with tri-aryl structures (A and B) for their potency to reduce primary breast tumor growth and lung metastasis in 4T1 mice model. MTT assay, 4T1 mammary mouse model, and immunohistochemistry experiments were used in this study. In-vitro results exhibited an anti-proliferative effect for compounds A and B towards MDA-MB-231 cancer cells. Our in-vivo results displayed that administered compounds A and B could suppress the size of the primary tumor and the number of lung metastatic foci in 4T1 BALB/c mice model. Histopathological analysis revealed that treatment of both compounds resulted in necrosis. Our findings provide new evidence that compound B may be promising for slowing the growth of tumor along with metastatic foci via COX-2 independent pathway.

16.
BMC Pharmacol Toxicol ; 21(1): 79, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213519

RESUMO

BACKGROUND: Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. METHODS: Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. RESULTS: MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 µM) at 24 and 48 h. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. CONCLUSIONS: Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.


Assuntos
Antineoplásicos/química , Antineoplásicos/toxicidade , Cardiotoxinas/química , Cardiotoxinas/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Ratos
17.
Bioorg Chem ; 104: 104276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32992280

RESUMO

Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k). The results of anti-proliferative assay led to the discovery of compound 8j with a high potent cytotoxic effect using colon, liver and breast cancer cells. Furthermore, MDA-MB-231 and 4T1 cell lines were used to represent triple negative breast cancer (TNBC). Next, a number of in vitro and in vivo evaluations were carried out to demonstrate the potential activity against TNBC and also elucidate the possible mechanism of cell death induction. Our in vitro outcomes exhibited an impressive anticancer activity for compound 8j toward MDA-MB-231 cells through inducing apoptosis and a remarkable anti-metastatic feature via suppressing MMP-9 expression as well. Consistently, the in vivo and immunohistopathologic evaluations demonstrated that this compound significantly inhibited the 4T1 induced tumor growth and its metastasis to the lung. Altogether, among numerous thiazolidinone derivatives, compound 8j might represent a promising anticancer agent for TNBC, which is a major concern in the developed and developing countries.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Tiazolidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Células Tumorais Cultivadas
18.
BMC Cancer ; 20(1): 836, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883235

RESUMO

BACKGROUND: Interaction between microenvironment and breast cancer cells often is not considered at the early stages of drug development leading to failure of many drugs at later clinical stages. Etanercept is a TNF-alpha inhibitor that has been investigated for potential antitumor effect in breast cancer with conflicting results. METHODS: Secretome data on MDA-MB-231 cancer cell-line were from public repositories and subjected to gene enrichment analyses. Since MDA-MB-231 cells secrete high levels of Granulocyte-Monocyte Colony Stimulating Factor, which activates macrophages to promote tumor growth, the effect of macrophage co-culturing on anticancer efficacy of Etanercept in breast cancer was evaluated using the Boolean network modeling and in vitro experiments including invasion, cell cycle, Annexin PI, and tetrazolium based viability assays and NFKB activity. RESULTS: The secretome profile of MDA-MB-231 cells was similar to the expression of genes following treatment of breast cancer cells with TNF-α. Accordingly, inhibition of TNF-α by Etanercept decreased MDA-MB-231 cell survival, induced apoptosis and cell cycle arrest in vitro and inhibited NFKB activation. The inhibitory effect of Etanercept on cell viability, cell cycle progression, invasion and induction of apoptosis decreased following co-culturing of the cancer cells with macrophages. The Boolean network modeling of the changes in the dynamics of intracellular signaling pathways revealed NFKB activation by secretome of macrophages, leading to a decreased efficacy of Etanercept, suggesting NFKB inhibition as an alternative approach to inhibit cancer cell growth in the presence of macrophage crosstalk. CONCLUSION: This study indicates that the effect of Etanercept may be influenced by residing macrophages in tumor microenvironment, and suggests a method to predict the effect of drugs in the presence of stromal cells to guide experimental designs in drug development.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/imunologia , Etanercepte/farmacologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Simulação por Computador , Feminino , Humanos , Invasividade Neoplásica , Proteoma , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
19.
Front Oncol ; 10: 1101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793473

RESUMO

Background: It is well-described that the transcriptome of peripheral blood mononuclear cells (PBMCs) can be altered in the context of many malignancies to allow them avoid the effective immune response, which leads to cancer invasiveness. Here, we used an MS-based strategy to discover biomarkers in the PBMCs of breast cancer (BC) patients and validated them at different stages of BC. Methods: PBMCs were isolated from the breast cancer patients and were cultured alone or co-cultured with breast cancer cell lines. The role of PBMC in the invasion property of breast cancer cells was explored. NF-kB activity was also measured in the co-cultured breast cancer cells. Identification of protein profiles in the secretome and proteome of the co-cultured PBMCs was performed using SWATH mass spectrometry. Pathway enrichment and gene ontology analyses were carried out to look for the molecular pathways correlated with the protein expression profile of PBMCs in the breast cancer patients. Quantitative real-time polymerase chain reaction (qPCR) was performed to validate the candidate genes in the PBMC fraction of the breast cancer patients at the primary and metastatic stages. In silico survival analysis was performed to assess the potential clinical biomarkers in these PBMC subtypes. Results: PBMCs could significantly increase the invasion property of the BC cells concomitant with a decrease in E-cadherin and an increase in both Vimentin and N-cadherin expression. The NF-kB activity in the BC cells significantly increased following co-culturing implying the role of PBMCs in EMT induction. Enrichment analysis showed that the differentially expressed proteins in PBMCs are mainly associated with IL-17, PI3K-Akt, and HIF-1 signaling pathway, in which a set of seven proteins including TMSB4X, HSPA4, S100A9, SRSF6, THBS1, CUL4A, and CANX were frequently expressed. Finally, in silico analysis confirmed that a gene set consisting of S100A9, SRSF6, THBS1, CUL4A, and CANX were found to provide an insight for the identification of metastasis in breast cancer patients. Conclusion: In conclusion, our study revealed that the protein expression profile in PBMCs is a reflection of the proteins expressed in the BC tissue itself; however, the abundance level is different due to the stage of cancer.

20.
Iran Biomed J ; 24(4): 243-50, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306722

RESUMO

Background: Our previous findings indicated that carvacrol and thymol alleviate cognitive impairments caused by Aß in rodent models of Alzheimer's disease (AD). In this study, the neuroprotective effects of carvacrol and thymol against Aß25-35-induced cytotoxicity were evaluated, and the potential mechanisms were determined. Methods: PC12 cells were pretreated with Aß25-35 for 2 h, followed by incubation with carvacrol or thymol for additional 48 h. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. A flurospectrophotometer was employed to observe the intracellular reactive oxygen species (ROS) production. Protein kinase C (PKC) activity was analyzed using ELISA. Results: Our results indicated that carvacrol and thymol could significantly protect PC12 cells against Aß25-35-induced cytotoxicity. Furthermore, Aß25-35 could induce intracellular ROS production, while carvacrol and thymol could reverse this effect. Moreover, our findings showed that carvacrol and thymol elevate PKC activity similar to Bryostatin-1, as a PKC activator. Conclusion: This study provided the evidence regarding the protective effects of carvacrol and thymol against Aß25­35-induced cytotoxicity in PC12 cells. The results suggested that the neuroprotective effects of these compounds against Aß25-35 might be through attenuating oxidative damage and increasing the activity of PKC as a memory-related protein. Thus, carvacrol and thymol were found to have therapeutic potential in preventing or modulating AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose/efeitos dos fármacos , Cimenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Proteína Quinase C/metabolismo , Timol/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cimenos/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Timol/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA