Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39120584

RESUMO

Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.


Assuntos
Carcinoma Ductal Pancreático , Movimento Celular , Exocitose , Lisossomos , Invasividade Neoplásica , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases , Canais de Potencial de Receptor Transitório , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Lisossomos/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética
2.
iScience ; 27(7): 110180, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38993666

RESUMO

PARP inhibitors (PARPi) are efficacious in BRCA1-null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in BRCA1 wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT. These reporter lines enable the sensitive measurement of BRCA1 protein levels by luminescence. Validated reporter cells were used in a pilot screen of epigenetic-modifying probes and a larger screen of more than 6,000 compounds. We identified 7 compounds that could downregulate BRCA1-HiBiT expression and synergize with olaparib. Three compounds, N-acetyl-N-acetoxy chlorobenzenesulfonamide (NANAC), A-443654, and CHIR-124, were validated to reduce BRCA1 protein levels and sensitize breast cancer cells to the toxic effects of olaparib. These results suggest that BRCA1-HiBiT reporter cells hold promise in developing agents to improve the clinical utility of PARPi.

3.
Mol Biol Cell ; 35(9): ar118, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024272

RESUMO

Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3ß. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.


Assuntos
Aciltransferases , Fator de Crescimento Epidérmico , Receptores ErbB , Fosfatos de Fosfatidilinositol , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Aciltransferases/metabolismo , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fosforilação , Proliferação de Células
4.
Cancer Epidemiol Biomarkers Prev ; 33(2): 298-305, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38015775

RESUMO

BACKGROUND: Lower levels of osteoprotegerin (OPG), the decoy receptor for receptor activator of NFκB (RANK)-ligand, have been reported among women with a BRCA1 mutation, suggesting OPG may be marker of cancer risk. Whether various reproductive, hormonal, or lifestyle factors impact OPG levels in these women is unknown. METHODS: BRCA1 mutation carriers enrolled in a longitudinal study, no history of cancer, and a serum sample for OPG quantification, were included. Exposure information was collected through self-reported questionnaire at study enrollment and every 2 years thereafter. Serum OPG levels (pg/mL) were measured using an ELISA, and generalized linear models were used to assess the associations between reproductive, hormonal, and lifestyle exposures at the time of blood collection with serum OPG. Adjusted means were estimated using the fully adjusted model. RESULTS: A total of 701 women with a median age at blood collection of 39.0 years (18.0-82.0) were included. Older age (Spearman r = 0.24; P < 0.001) and current versus never smoking (98.82 vs. 86.24 pg/mL; Pcat < 0.001) were associated with significantly higher OPG, whereas ever versus never coffee consumption was associated with significantly lower OPG (85.92 vs. 94.05 pg/mL; Pcat = 0.03). There were no other significant associations for other exposures (P ≥ 0.06). The evaluated factors accounted for 7.5% of the variability in OPG. CONCLUSIONS: OPG is minimally influenced by hormonal and lifestyle factors among BRCA1 mutation carriers. IMPACT: These findings suggest that circulating OPG levels are not impacted by non-genetic factors in high-risk women.


Assuntos
Genes BRCA1 , Osteoprotegerina , Adulto , Feminino , Humanos , Proteína BRCA1/genética , Estudos Longitudinais , Osteoprotegerina/genética , Fumar
5.
J Exp Clin Cancer Res ; 42(1): 20, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639824

RESUMO

BACKGROUND: Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS: We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS: We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS: Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Mama/patologia , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
7.
Viruses ; 14(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891345

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus, responsible for an atypical pneumonia that can progress to acute lung injury. MicroRNAs are small non-coding RNAs that control specific genes and pathways. This study evaluated the association between circulating miRNAs and lung injury associated with COVID-19. Methods: We evaluated lung injury by computed tomography at hospital admission and discharge and the serum expression of 754 miRNAs using the TaqMan OpenArray after hospital discharge in 27 patients with COVID-19. In addition, miR-150-3p was validated by qRT-PCR on serum samples collected at admission and after hospital discharge. Results: OpenArray analysis revealed that seven miRNAs were differentially expressed between groups of patients without radiological lung improvement compared to those with lung improvement at hospital discharge, with three miRNAs being upregulated (miR-548c-3p, miR-212-3p, and miR-548a-3p) and four downregulated (miR-191-5p, miR-151a-3p, miR-92a-3p, and miR-150-3p). Bioinformatics analysis revealed that five of these miRNAs had binding sites in the SARS-CoV-2 genome. Validation of miR-150-3p by qRT-PCR confirmed the OpenArray results. Conclusions: The present study shows the potential association between the serum expression of seven miRNAs and lung injury in patients with COVID-19. Furthermore, increased expression of miR-150 was associated with pulmonary improvement at hospital discharge.


Assuntos
COVID-19 , Lesão Pulmonar , MicroRNAs , COVID-19/genética , Biologia Computacional/métodos , Humanos , MicroRNAs/metabolismo , SARS-CoV-2
8.
J Biol Chem ; 298(8): 102187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760104

RESUMO

Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.


Assuntos
Fibroblastos , Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética
9.
Cell Rep ; 38(10): 110481, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263585

RESUMO

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
10.
PLoS One ; 16(11): e0259313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813622

RESUMO

Lysosomes are terminal, degradative organelles of the endosomal pathway that undergo repeated fusion-fission cycles with themselves, endosomes, phagosomes, and autophagosomes. Lysosome number and size depends on balanced fusion and fission rates. Thus, conditions that favour fusion over fission can reduce lysosome numbers while enlarging their size. Conversely, favouring fission over fusion may cause lysosome fragmentation and increase their numbers. PIKfyve is a phosphoinositide kinase that generates phosphatidylinositol-3,5-bisphosphate to modulate lysosomal functions. PIKfyve inhibition causes an increase in lysosome size and reduction in lysosome number, consistent with lysosome coalescence. This is thought to proceed through reduced lysosome reformation and/or fission after fusion with endosomes or other lysosomes. Previously, we observed that photo-damage during live-cell imaging prevented lysosome coalescence during PIKfyve inhibition. Thus, we postulated that lysosome fusion and/or fission dynamics are affected by reactive oxygen species (ROS). Here, we show that ROS generated by various independent mechanisms all impaired lysosome coalescence during PIKfyve inhibition and promoted lysosome fragmentation during PIKfyve re-activation. However, depending on the ROS species or mode of production, lysosome dynamics were affected distinctly. H2O2 impaired lysosome motility and reduced lysosome fusion with phagosomes, suggesting that H2O2 reduces lysosome fusogenecity. In comparison, inhibitors of oxidative phosphorylation, thiol groups, glutathione, or thioredoxin, did not impair lysosome motility but instead promoted clearance of actin puncta on lysosomes formed during PIKfyve inhibition. Additionally, actin depolymerizing agents prevented lysosome coalescence during PIKfyve inhibition. Thus, we discovered that ROS can generally prevent lysosome coalescence during PIKfyve inhibition using distinct mechanisms depending on the type of ROS.


Assuntos
Espécies Reativas de Oxigênio , Autofagossomos/metabolismo , Peróxido de Hidrogênio , Lisossomos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo
11.
Science ; 373(6551)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244384

RESUMO

Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de Down/genética , Fator de Transcrição GATA1/genética , Células-Tronco Hematopoéticas/fisiologia , Leucemia Mieloide/genética , Pré-Leucemia/genética , Animais , Antígenos CD34/análise , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Proliferação de Células , Transformação Celular Neoplásica , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 21/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Síndrome de Down/complicações , Feminino , Fator de Transcrição GATA1/metabolismo , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Fígado/embriologia , Masculino , Megacariócitos/fisiologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Pré-Leucemia/metabolismo , Pré-Leucemia/patologia , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-kit/análise , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Coesinas
13.
Genes (Basel) ; 11(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858958

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely, low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Additionally, 28 microRNA also target the SARS-CoV genome while 23 microRNA target the MERS-CoV genome. We also found that a number of microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as a cellular defence mechanism against pathogenic coronavirus infections.


Assuntos
Células Epiteliais Alveolares/virologia , Betacoronavirus/genética , MicroRNAs/genética , Células Epiteliais Alveolares/imunologia , Betacoronavirus/patogenicidade , Linhagem Celular Tumoral , Genoma Viral , Humanos , MicroRNAs/metabolismo , Motivos de Nucleotídeos , SARS-CoV-2 , Análise de Sequência de RNA
14.
J Hematol Oncol ; 13(1): 73, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517731

RESUMO

Here we apply state-of-the-art CRISPR technologies to study the impact that PTENP1 pseudogene transcript has on the expression levels of its parental gene PTEN, and hence on the output of AKT signaling in cancer. Our data expand the repertoire of approaches that can be used to dissect competing endogenous RNA (ceRNA)-based interactions, while providing further experimental evidence in support of the very first one that we discovered.


Assuntos
Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Pseudogenes/genética , RNA Neoplásico/genética , Adenocarcinoma/patologia , Ligação Competitiva , Divisão Celular , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , PTEN Fosfo-Hidrolase/biossíntese , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Homologia de Sequência do Ácido Nucleico
15.
Fac Rev ; 9: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33659963

RESUMO

In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31871240

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a key tumor suppressor in the development and progression of different tumor types. Emerging data indicate that small reductions in PTEN protein levels can promote cancer. PTEN protein levels are tightly controlled by a plethora of mechanisms beginning with epigenetic and transcriptional regulation and ending with control of protein synthesis and stability. PTEN messenger RNA (mRNA) is also subject to exquisite regulation by microRNAs, coding and long noncoding RNAs, and RNA-binding proteins. Additionally, PTEN mRNA is markedly influenced by alternative splicing and variable polyadenylation. Herein we provide a synoptic description of the current understanding of the complex regulatory landscape of PTEN mRNA regulation including several specific processes that modulate its stability and expression, in the context of PTEN loss-associated cancers.


Assuntos
MicroRNAs/genética , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , Humanos , MicroRNAs/biossíntese , Neoplasias/diagnóstico , PTEN Fosfo-Hidrolase/biossíntese , RNA Longo não Codificante/genética , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
17.
Oncotarget ; 10(59): 6378-6390, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31695845

RESUMO

Inositol Polyphosphate 4-Phosphatase, Type II (INPP4B) is a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that INPP4B also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that INPP4B may be a context dependent cancer gene. Whether INPP4B functions solely in a tumour suppressing or tumour promoting manner, or both in non-transformed cells is currently not clear. In this study, consequences of deficiency and overexpression of INPP4B on cellular transformation was investigated using a mouse embryonic fibroblast (MEF) model of cellular transformation. We observed that neither deficiency nor overexpression of INPP4B was sufficient to induce neoplastic transformation, alone or in combination with H-Ras V12 or E1A overexpression. However, Inpp4b-deficiency did cooperate with SV40 T-Large-mediated cellular transformation, a finding which was associated with increased phosphorylated-Akt levels. Transformation and phosphorylated-Akt levels were dampened upon overexpression of INPP4B in SV40 T-Large-MEF. Together, our findings support a model where INPP4B function suppresses transformation mediated by SV40 T-Large, but is inconsequential for Ras and E1A mediated transformation.

18.
Oncotarget ; 10(25): 2475-2483, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-31069010

RESUMO

BACKGROUND: Aberrant progesterone/receptor activator of nuclear factor κß (RANK) signaling has been implicated in BRCA1 breast cancer development. Furthermore, lower circulating RANKL has been reported among women with a BRCA mutation compared to non-carriers; however, there have been no reports of plasma RANKL levels and subsequent breast cancer risk. We prospectively evaluated the relationship between plasma RANKL and breast cancer risk among women with a BRCA1 or BRCA2 mutation. METHODS: An enzyme-linked immunosorbent assay was used to quantify plasma RANKL levels in 184 BRCA mutation carriers. Women were stratified into high vs. low RANKL based on the median levels of the cohort (5.24 pg/ml). Kaplan-Meier survival analysis was used to estimate the cumulative incidence of breast cancer by baseline plasma RANKL and cox proportional hazards models were used to estimate the adjusted hazard ratios (HRs) and 95% confidence intervals (CI) for the association between plasma RANKL and risk. RESULTS: Over a mean follow-up of 6.3 years (0.02-19.24), 15 incident breast cancers were identified. The eight-year cumulative incidence was 10% in the low RANKL group and 12% in the high RANKL group (P-log-rank = 0.85). There was no significant association between plasma RANKL levels and breast cancer risk (multivariate HR high vs. low = 1.06; 95%CI 0.34-3.28; P-trend = 0.86). CONCLUSIONS: These findings suggest that circulating RANKL levels are not associated with breast cancer among BRCA mutation carriers. Pending validation in a larger sample, these findings suggest that RANKL is likely not a biomarker of breast cancer risk among BRCA mutation carriers.

19.
Cancer Causes Control ; 29(6): 507-517, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29679262

RESUMO

PURPOSE: Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. METHODS: We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. RESULTS: Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm2 vs. 15.2 cm2; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. CONCLUSIONS: These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.


Assuntos
Densidade da Mama , Neoplasias da Mama/patologia , Osteoprotegerina/sangue , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fatores de Risco
20.
PLoS One ; 13(2): e0191510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29415082

RESUMO

Our previous studies demonstrated that INPP4B, a member of the PI3K/Akt signaling pathway, is overexpressed in a subset of AML patients and is associated with lower response to chemotherapy and shorter survival. INPP4B expression analysis in AML revealed a right skewed frequency distribution with 25% of patients expressing significantly higher levels than the majority. The 75% low/25% high cut-off revealed the prognostic power of INPP4B expression status in AML, which would not have been apparent with a standard median cut-off approach. Our identification of a clinically relevant non-median cut-off for INPP4B indicated a need for a generalizable non-median dichotomization approach to optimally study clinically relevant genes. To address this need, we developed Subgroup Identifier (SubID), a tool which examines the relationship between a continuous variable (e.g. gene expression), and a test parameter (e.g. CoxPH or Fisher's exact P values). In our study, Fisher's exact SubID was used to reveal EVI1 as a transcriptional regulator of INPP4B in AML; a finding which was validated in vitro. Next, we used CoxPH SubID to conduct a pan-cancer analysis of INPP4B's prognostic significance. Our analysis revealed that INPP4Blow is associated with shorter survival in kidney clear cell, liver hepatocellular, and bladder urothelial carcinomas. Conversely, INPP4Blow was shown to be associated with increased survival in pancreatic adenocarcinoma in three independent datasets. Overall, our study describes the development and application of a novel subgroup identification tool used to identify prognostically significant rare subgroups based upon gene expression, and for investigating the association between a gene with skewed frequency distribution and potentially important upstream and downstream genes that relate to the index gene.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Leucemia Mieloide Aguda/genética , Proteína do Locus do Complexo MDS1 e EVI1/fisiologia , Neoplasias/genética , Monoéster Fosfórico Hidrolases/genética , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA