Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 102: 104048, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682158

RESUMO

Phosphoglucose isomerase (PGI) is a cytosolic enzyme that catalyzes the reversible interconversion of d-glucose 6-phosphate and d-fructose 6-phosphate in glycolysis. Outside the cell, PGI is also known as autocrine motility factor (AMF), a cytokine secreted by a large variety of tumor cells that stimulates motility of cancer cells in vitro and metastases development in vivo. Human PGI and AMF are strictly identical proteins both in terms of sequence and 3D structure, and AMF activity is known to involve, at least in part, the enzymatic active site. Hence, with the purpose of finding new strong AMF-PGI inhibitors that could be potentially used as anticancer agents and/or as bioreceptors for carbohydrate-based electrochemical biosensors, we report in this study the synthesis and kinetic evaluation of several new human PGI inhibitors derived from the synthon 5-phospho-d-arabinono-1,4-lactone. Although not designed as high-energy intermediate analogue inhibitors of the enzyme catalyzed isomerization reaction, several of these N-substituted 5-phosphate-d-arabinonamide derivatives appears as new strong PGI inhibitors. For one of them, we report its crystal structure in complex with human PGI at 2.38 Å. Detailed analysis of its interactions at the active site reveals a new binding mode and shows that human PGI is relatively tolerant for modified inhibitors at the "head" C-1 part, offering promising perspectives for the future design of carbohydrate-based biosensors.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Fosfatos/síntese química , Fosfatos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Humanos , Fosfatos/farmacologia , Relação Estrutura-Atividade
2.
J Comput Chem ; 41(8): 839-854, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-31909840

RESUMO

We calibrate and validate the parameters necessary to represent the dianionic phosphate group (DPG) in molecular mechanics. DPG is an essential fragment of signaling biological molecules and protein-binding ligands. It is a constitutive fragment of biosensors, which bind to the dimer interface of phosphoglucose isomerase (PGI), an intracellular enzyme involved in sugar metabolism, as well as an extracellular protein known as autocrine motility factor (AMF) closely related to metastasis formation. Our long-term objective is to design DPG-based biosensors with enhanced affinities for AMF/PGI cancer biomarker in blood. Molecular dynamics with polarizable potentials could be used toward this aim. This requires to first evaluate the accuracy of such potentials upon representing the interactions of DPG with its PGI ligands and tightly bound water molecules. Such evaluations are done by comparisons with high-level ab initio quantum chemistry (QC) calculations. We focus on the Sum of Interactions Between Fragments Ab initio computed (SIBFA) polarizable molecular mechanics procedure. We present first the results of the DPG calibration. This is followed by comparisons between ΔE(SIBFA) and ΔE(QC) regarding bi-molecular complexes of DPG with the main-chain and side-chain PGI residues, which bind to it in the recognition site. We then consider DPG complexes with an increasing number of PGI residues. The largest QC complexes encompass the entirety of the recognition site, with six structural water molecules totaling up to 211 atoms. A persistent and satisfactory agreement could be shown between ΔE(SIBFA) and ΔE(QC). These validations constitute an essential first step toward large-scale molecular dynamics simulations of DPG-based biosensors bound at the PGI dimer interface. © 2020 Wiley Periodicals, Inc.


Assuntos
Teoria da Densidade Funcional , Glucose-6-Fosfato Isomerase/química , Fosfatos/química , Ânions/química , Calibragem , Glucose-6-Fosfato Isomerase/metabolismo
3.
J Med Chem ; 61(23): 10558-10572, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30418024

RESUMO

The glycolytic enzyme aldolase is an emerging drug target in diseases such as cancer and protozoan infections which are dependent on a hyperglycolytic phenotype to synthesize adenosine 5'-triphosphate and metabolic precursors for biomass production. To date, structural information for the enzyme in complex with phosphate-derived inhibitors has been lacking. Thus, we determined the crystal structure of mammalian aldolase in complex with naphthalene 2,6-bisphosphate (1) that served as a template for the design of bisphosphonate-based inhibitors, namely, 2-phosphate-naphthalene 6-bisphosphonate (2), 2-naphthol 6-bisphosphonate (3), and 1-phosphate-benzene 4-bisphosphonate (4). All inhibitors targeted the active site, and the most promising lead, 2, exhibited slow-binding inhibition with an overall inhibition constant of ∼38 nM. Compound 2 inhibited proliferation of HeLa cancer cells, whereas HEK293 cells expressing a normal phenotype were not inhibited. The crystal structures delineated the essential features of high-affinity phosphate-derived inhibitors and provide a template for the development of inhibitors with prophylaxis potential.


Assuntos
Difosfonatos/farmacologia , Frutose-Bifosfato Aldolase/antagonistas & inibidores , Frutose-Bifosfato Aldolase/metabolismo , Animais , Domínio Catalítico , Difosfonatos/química , Desenho de Fármacos , Frutose-Bifosfato Aldolase/química , Glicólise/efeitos dos fármacos , Modelos Moleculares , Coelhos
4.
Biosens Bioelectron ; 96: 178-185, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500945

RESUMO

Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe2+/Fe3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest.


Assuntos
Técnicas Biossensoriais/métodos , Glucose-6-Fosfato Isomerase/sangue , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Técnicas Biossensoriais/instrumentação , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Desenho de Equipamento , Frutosefosfatos/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Ouro/química , Humanos , Limite de Detecção , Modelos Moleculares , Neoplasias/sangue , Neoplasias/metabolismo , Oxirredução , Coelhos
5.
Bioorg Med Chem ; 20(4): 1511-20, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22269276

RESUMO

In the design of inhibitors of phosphosugar metabolizing enzymes and receptors with therapeutic interest, malonate has been reported in a number of cases as a good and hydrolytically-stable surrogate of the phosphate group, since both functions are dianionic at physiological pH and of comparable size. We have investigated a series of malonate-based mimics of the best known phosphate inhibitors of class II (zinc) fructose-1,6-bis-phosphate aldolases (FBAs) (e.g., from Mycobacterium tuberculosis), type I (zinc) phosphomannose isomerase (PMI) from Escherichia coli, and phosphoglucose isomerase (PGI) from yeast. In the case of FBAs, replacement of one phosphate by one malonate on a bis-phosphorylated inhibitor (1) led to a new compound (4) still showing a strong inhibition (K(i) in the nM range) and class II versus class I selectivity (up to 8×10(4)). Replacement of the other phosphate however strongly affected binding efficiency and selectivity. In the case of PGI and PMI, 5-deoxy-5-malonate-D-arabinonohydroxamic acid (8) yielded a strong decrease in binding affinities when compared to its phosphorylated parent compound 5-phospho-D-arabinonohydroxamic acid (2). Analysis of the deposited 3D structures of the kinetically evaluated enzymes complexed to the phosphate-based inhibitors indicate that malonate could be a good phosphate surrogate only if phosphate is not tightly bound at the enzyme active site, such as in position 7 of compound 1 for FBAs. These observations are of importance for further design of inhibitors of phosphorylated-compounds metabolizing enzymes with therapeutic interest.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Frutose-Bifosfato Aldolase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Malonatos/síntese química , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Animais , Domínio Catalítico , Ativação Enzimática/efeitos dos fármacos , Escherichia/enzimologia , Humanos , Concentração Inibidora 50 , Malonatos/química , Malonatos/farmacologia , Modelos Biológicos , Estrutura Molecular , Leveduras/enzimologia
6.
J Enzyme Inhib Med Chem ; 21(2): 187-92, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16791965

RESUMO

D-Sorbitol-6-phosphate 2-dehydrogenase catalyzes the NADH-dependent conversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate and improved production and purification of the enzyme from Escherichia coli is reported. Preliminary inhibition studies of the enzyme revealed 5-phospho-D-arabinonohydroxamic acid and 5-phospho-D-arabinonate as new substrate analogue inhibitors of the F6P catalyzed reduction with IC50 values of (40 +/- 1) microM and (48 +/- 3) microM and corresponding Km/IC50 ratio values of 14 and 12, respectively. Furthermore, we report here the phosphomannose isomerase substrate D-mannose 6-phosphate as the best inhibitor of E. coli D-sorbitol-6-phosphate 2-dehydrogenase yet reported with an IC50 = 7.5 +/- 0.4 microM and corresponding Km/IC50 ratio = about 76.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Desidrogenase do Álcool de Açúcar/antagonistas & inibidores , Inibidores Enzimáticos/química , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/metabolismo , Hexosefosfatos/metabolismo , Hexosefosfatos/farmacologia , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Cinética , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Manose-6-Fosfato Isomerase/metabolismo , Manosefosfatos/metabolismo , Manosefosfatos/farmacologia , Pentosefosfatos/metabolismo , Pentosefosfatos/farmacologia , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/isolamento & purificação , Desidrogenase do Álcool de Açúcar/metabolismo , Fosfatos Açúcares/metabolismo , Fosfatos Açúcares/farmacologia
7.
J Mol Biol ; 343(3): 649-57, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15465052

RESUMO

Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing enzyme that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). The recent structure of PfPGI has confirmed the hypothesis that the enzyme belongs to the cupin superfamily and identified the position of the active site. This fold is distinct from the alphabetaalpha sandwich fold commonly seen in phosphoglucose isomerases (PGIs) that are found in bacteria, eukaryotes and some archaea. Whilst the mechanism of the latter family is thought to proceed through a cis-enediol intermediate, analysis of the structure of PfPGI in the presence of inhibitors has led to the suggestion that the mechanism of this enzyme involves the metal-dependent direct transfer of a hydride between C1 and C2 atoms of the substrate. To gain further insight in the reaction mechanism of PfPGI, the structures of the free enzyme and the complexes with the inhibitor, 5-phospho-d-arabinonate (5PAA) in the presence and absence of metal have been determined. Comparison of these structures with those of equivalent complexes of the eukaryotic PGIs reveals similarities at the active site in the disposition of possible catalytic residues. These include the presence of a glutamic acid residue, Glu97 in PfPGI, which occupies the same position relative to the inhibitor as that of the glutamate that is thought to function as the catalytic base in the eukaryal-type PGIs. These similarities suggest that aspects of the catalytic mechanisms of these two structurally unrelated PGIs may be similar and based on an enediol intermediate.


Assuntos
Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/química , Pentosefosfatos/química , Conformação Proteica , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Frutosefosfatos/metabolismo , Glucose-6-Fosfato/metabolismo , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Pentosefosfatos/metabolismo , Ligação Proteica
8.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 5): 915-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15103138

RESUMO

Glucose-6-phosphate isomerase (PGI; EC 5.3.1.9; also often called by its old nomenclature phosphoglucose isomerase) is an intracellular enzyme that catalyses the reversible conversion of D-glucose 6-phosphate (G6P) to D-fructose 6-phosphate (F6P). The native Leishmania PGI is a homodimeric molecule of 60 kDa per monomer with 47% sequence identity to human PGI. It has been shown to be present in both the cytosol and the glycosome of Leishmania promastigotes and represents a potential target for rational drug design. The present work describes the crystallization of two bacterially expressed Leishmania PGI constructs, one corresponding to the natural protein and the other to an N-terminally deleted form. Crystals of both forms are identical and present a large c unit-cell parameter. A complete data set was collected from the N-terminally deleted PGI to a resolution of 3.3 A in space group P6(1), with unit-cell parameters a = b = 87.0, c = 354.7 A, alpha = beta = 90, gamma = 120 degrees. A preliminary study of the first inhibitors to be evaluated on the Leishmania enzyme is also reported.


Assuntos
Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/química , Leishmania mexicana/enzimologia , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Dimerização , Inibidores Enzimáticos/farmacologia , Frutosefosfatos/metabolismo , Glucose-6-Fosfato Isomerase/isolamento & purificação , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
9.
Biochemistry ; 43(10): 2926-34, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15005628

RESUMO

The phosphomannose isomerases (PMI) comprise three families of proteins: type I, type II, and type III PMIs. Members of all three families catalyze the reversible isomerization of D-mannose 6-phosphate (M6P) and D-fructose 6-phosphate (F6P) but share little or no sequence identity. Because (1) PMIs are essential for the survival of several microorganisms, including yeasts and bacteria, and (2) the PMI enzymes from several pathogens do not share significant sequence identity to the human protein, PMIs have been considered as potential therapeutic targets. Elucidation of the catalytic and regulatory mechanisms of the different types of PMIs is strongly needed for rational species-specific drug design. To date, inhibition and crystallographic studies of all PMIs are still largely unexplored. As part of our research program on aldose-ketose isomerases, we report in this paper the evaluation of two new inhibitors of type I and type II PMIs from baker's yeast and Pseudomonas aeruginosa, respectively. We found that 5-phospho-D-arabinonohydroxamic acid (5PAH), which is the most potent inhibitor of phosphoglucose isomerase (PGI), is by far the best inhibitor ever reported of both type I and type II PMI-catalyzed isomerization of M6P to F6P. 5PAH, which has an inhibition constant at least 3 orders of magnitude smaller than that of previously reported PMI inhibitors, may be the first high-energy intermediate analogue inhibitor of the enzymes. We also tested the related molecule 5-phospho-D-arabinonate (5PAA), which is a strong competitive inhibitor of PGI, and found that it does not inhibit either PMI. All together, our results are consistent with a catalytic role for the metal cofactor in PMI activity.


Assuntos
Coenzimas/química , Ácidos Hidroxâmicos/química , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Manose-6-Fosfato Isomerase/química , Metais/química , Fosfatos Açúcares/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Ligação Competitiva , Catálise , Inibidores Enzimáticos/síntese química , Frutosefosfatos/química , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/química , Isomerismo , Cinética , Manose-6-Fosfato Isomerase/classificação , Manosefosfatos/química , Modelos Químicos , Pseudomonas aeruginosa/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química
10.
Proc Natl Acad Sci U S A ; 99(9): 5872-7, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11983887

RESUMO

Phosphoglucose isomerase (EC ) catalyzes the second step in glycolysis, the reversible isomerization of D-glucose 6-phosphate to D-fructose 6-phosphate. The reaction mechanism involves acid-base catalysis with proton transfer and proceeds through a cis-enediol(ate) intermediate. 5-Phospho-D-arabinonohydroxamic acid (5PAH) is a synthetic small molecule that resembles the reaction intermediate, differing only in that it has a nitrogen atom in place of C1. Hence, 5PAH is the best inhibitor of the isomerization reaction reported to date with a K(i) of 2 x 10(-7) M. Here we report the crystal structure of rabbit phosphoglucose isomerase complexed with 5PAH at 1.9 A resolution. The interaction of 5PAH with amino acid residues in the enzyme active site supports a model of the catalytic mechanism in which Glu-357 transfers a proton between C1 and C2 and Arg-272 helps stabilize the intermediate. It also suggests a mechanism for proton transfer between O1 and O2.


Assuntos
Glucose-6-Fosfato Isomerase/química , Ácidos Hidroxâmicos/química , Fosfatos Açúcares/química , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ácido Glutâmico/química , Modelos Químicos , Modelos Moleculares , Músculo Esquelético/enzimologia , Nitrogênio/química , Ligação Proteica , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA