Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 184(22): 5506-5526, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715021

RESUMO

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Assuntos
Envelhecimento/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Doença , Animais , Humanos , Micronúcleo Germinativo/metabolismo , Retroelementos/genética
2.
Aging Cell ; 20(2): e13296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470505

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest and a pro-inflammatory senescence-associated secretory phenotype (SASP), which is a major contributor to aging and age-related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single-nuclei and single-cell RNA-seq in the hippocampus from young and aged mice. We observed an age-dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INK-ATTAC mice, in which p16Ink4a -positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof-of-concept for senolytic interventions' being a potential therapeutic avenue for alleviating age-associated cognitive impairment.


Assuntos
Disfunção Cognitiva/patologia , Encefalite/patologia , Fatores Etários , Animais , Senescência Celular , Disfunção Cognitiva/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Encefalite/metabolismo , Camundongos , Camundongos Transgênicos
3.
Nat Commun ; 8: 14532, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230051

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.


Assuntos
Senescência Celular , Fibrose Pulmonar Idiopática/patologia , Animais , Biomarcadores/metabolismo , Bleomicina , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/patologia , Masculino , Camundongos , Proteoma/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(22): 8049-54, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843142

RESUMO

Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.


Assuntos
Envelhecimento/metabolismo , Compartimento Celular/fisiologia , Corpos de Inclusão/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Vimentina/metabolismo , Actinas/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Células HeLa , Humanos , Filamentos Intermediários/metabolismo , Mamíferos , Camundongos , Microscopia Confocal/métodos , Mitose/fisiologia , Neuroblastoma , Saccharomyces cerevisiae , Fuso Acromático/metabolismo , Estresse Fisiológico/fisiologia , Vimentina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA