Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Radiother Oncol ; 187: 109822, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516362

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy delivery with ultra-high dose rates (UHDR) has consistently produced normal tissue sparing while maintaining efficacy for tumour control in preclinical studies, known as the FLASH effect. Modified clinical electron linacs have been used for pre-clinical studies at reduced source-surface distance (SSD) and novel intra-operative devices are becoming available. In this context, we modified a clinical linac to deliver 16 MeV UHDR electron beams with an isocentric setup. MATERIALS AND METHODS: The first Varian TrueBeam (SN 1001) was clinically operative between 2009-2022, it was then decommissioned and converted into a research platform. The 18 MeV electron beam was converted into the experimental 16 MeV UHDR. Modifications were performed by Varian and included a software patch, thinner scattering foil and beam tuning. The dose rate, beam characteristics and reproducibility were measured with electron applicators at SSD = 100 cm. RESULTS: The dose per pulse at isocenter was up to 1.28 Gy/pulse, corresponding to average and instantaneous dose rates up to 256 Gy/s and 3⋅105 Gy/s, respectively. Beam characteristics were equivalent between 16 MeV UHDR and conventional for field sizes up to 10x10cm2 and an overall beam reproducibility within ± 2.5% was measured. CONCLUSIONS: We report on the first technical conversion of a Varian TrueBeam to produce 16 MeV UHDR electron beams. This research platform will allow isocenter experiments and deliveries with conventional setups up to field sizes of 10x10 cm2 within a hospital environment, reducing the gap between preclinical and clinical electron FLASH investigations.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Radiometria
4.
Phys Imaging Radiat Oncol ; 22: 131-136, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35633866

RESUMO

Background and purpose: Radiomics offers great potential in improving diagnosis and treatment for patients with glioblastoma multiforme. However, in order to implement radiomics in clinical routine, the features used for prognostic modelling need to be stable. This comprises significant challenge in multi-center studies. The aim of this study was to evaluate the impact of different image normalization methods on MRI features robustness in multi-center study. Methods: Radiomics stability was checked on magnetic resonance images of eleven patients. The images were acquired in two different hospitals using contrast-enhanced T1 sequences. The images were normalized using one of five investigated approaches including grey-level discretization, histogram matching and z-score. Then, radiomic features were extracted and features stability was evaluated using intra-class correlation coefficients. In the second part of the study, improvement in the prognostic performance of features was tested on 60 patients derived from publicly available dataset. Results: Depending on the normalization scheme, the percentage of stable features varied from 3.4% to 8%. The histogram matching based on the tumor region showed the highest amount of the stable features (113/1404); while normalization using fixed bin size resulted in 48 stable features. The histogram matching also led to better prognostic value (median c-index increase of 0.065) comparing to non-normalized images. Conclusions: MRI normalization plays an important role in radiomics. Appropriate normalization helps to select robust features, which can be used for prognostic modelling in multicenter studies. In our study, histogram matching based on tumor region improved both stability of radiomic features and their prognostic value.

5.
Phys Med ; 94: 102-109, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35030383

RESUMO

PURPOSE: Patient shielding during medical X-ray imaging has been increasingly criticized in the last years due to growing evidence that it often provides minimal benefit and may even compromise image quality. In Europe, and as also shown in a short assessment in Switzerland, the use of patient shielding is inhomogeneous. The aim of this study was to systematically review recent literature in order to assess benefits and appraise disadvantages related to the routine use of patient shielding. METHODS: To evaluate benefits and disadvantages related to the application of patient shielding in radiological procedures, a systematic literature review was performed for CT, radiography, mammography and fluoroscopy-guided medical X-ray imaging. In addition, reports from medical physics societies and authorities of different countries were considered in the evaluation. RESULTS: The literature review revealed 479 papers and reports on the topic, from which 87 qualified for closer analysis. The review considered in- and out-of-plane patient shielding as well as shielding for pregnant and pediatric patients. Dose savings and other dose and non-dose related effects of patient shielding were considered in the evaluation. CONCLUSIONS: Although patient shielding has been used in radiological practice for many years, its use is no longer undisputed. The evaluation of the systematic literature review of recent studies and reports shows that dose savings are rather minimal while significant dose- and non-dose-related detrimental effects are present. Consequently, the routine usage of patient protection shielding in medical X-ray imaging can be safely discontinued for all modalities and patient groups.


Assuntos
Proteção Radiológica , Radiologia , Criança , Feminino , Fluoroscopia , Humanos , Gravidez , Doses de Radiação , Radiografia , Raios X
6.
Front Oncol ; 11: 636672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937035

RESUMO

BACKGROUND: Based on promising results from radiomic approaches to predict O6-methylguanine DNA methyltransferase promoter methylation status (MGMT status) and clinical outcome in patients with newly diagnosed glioblastoma, the current study aimed to evaluate radiomics in recurrent glioblastoma patients. METHODS: Pre-treatment MR-imaging data of 69 patients enrolled into the DIRECTOR trial in recurrent glioblastoma served as a training cohort, and 49 independent patients formed an external validation cohort. Contrast-enhancing tumor and peritumoral volumes were segmented on MR images. 180 radiomic features were extracted after application of two MR intensity normalization techniques: fixed number of bins and linear rescaling. Radiomic feature selection was performed via principal component analysis, and multivariable models were trained to predict MGMT status, progression-free survival from first salvage therapy, referred to herein as PFS2, and overall survival (OS). The prognostic power of models was quantified with concordance index (CI) for survival data and area under receiver operating characteristic curve (AUC) for the MGMT status. RESULTS: We established and validated a radiomic model to predict MGMT status using linear intensity interpolation and considering features extracted from gadolinium-enhanced T1-weighted MRI (training AUC = 0.670, validation AUC = 0.673). Additionally, models predicting PFS2 and OS were found for the training cohort but were not confirmed in our validation cohort. CONCLUSIONS: A radiomic model for prediction of MGMT promoter methylation status from tumor texture features in patients with recurrent glioblastoma was successfully established, providing a non-invasive approach to anticipate patient's response to chemotherapy if biopsy cannot be performed. The radiomic approach to predict PFS2 and OS failed.

7.
Eur Radiol ; 31(6): 3693-3702, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33263161

RESUMO

OBJECTIVES: To investigate the dependence of signal-to-noise ratio (SNR) and calculated average dose per volume of spiral breast-CT (B-CT) on breast size and breast density and to provide a guideline for choosing the optimal tube current for each B-CT examination. MATERIALS AND METHODS: Three representative B-CT datasets (small, medium, large breast size) were chosen to create 3D-printed breast phantoms. The phantoms were filled with four different agarose-oil-emulsions mimicking differences in breast densities. Phantoms were scanned in a B-CT system with systematic variation of the tube current (6, 12.5, 25, 32, 40, 50, 64, 80, 100, 125 mA). Evaluation of SNR and the average dose per volume using Monte Carlo simulations were performed for high (HR) and standard (STD) spatial resolution. RESULTS: SNR and average dose per volume increased with increasing tube current. Artifacts had negligible influence on image evaluation. SNR values ≥ 35 (HR) and ≥ 100 (STD) offer sufficient image quality for clinical evaluation with SNR being more dependent on breast density than on breast size. For an average absorbed dose limit of 6.5 mGy for the medium and large phantoms and 7 mGy for the small phantom, optimal tube currents were either 25 or 32 mA. CONCLUSIONS: B-CT offers the possibility to vary the X-ray tube current, allowing image quality optimization based on individual patient's characteristics such as breast size and density. This study describes the optimal B-CT acquisition parameters, which provide diagnostic image quality for various breast sizes and densities, while keeping the average dose at a level similar to digital mammography. KEY POINTS: • Image quality optimization based on breast size and density varying the tube current using spiral B-CT.


Assuntos
Tomografia Computadorizada Espiral , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Impressão Tridimensional , Doses de Radiação , Razão Sinal-Ruído
8.
Invest Radiol ; 55(12): 762-768, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32604386

RESUMO

OBJECTIVE: Estimations of radiation dose absorbed by the fetus from computed tomography (CT) in pregnant patients is mandatory, but currently available methods are not feasible in clinical routine. The aims of this study were to develop and validate a tool for assessment of fetal dose from CT of pregnant patients and to develop a user-friendly web interface for fast fetal dose calculations. METHODS: In the first study part, 750 Monte Carlo (MC) simulations were performed on phantoms representing pregnant patients at various gestational stages. The MC code simulating vendor-independent dose distributions was validated against CT dose index (CTDI) measurements performed on CT scanners of 2 vendors. The volume CTDI-normalized fetal dose values from MC simulations were used for developing the computational algorithm enabling fetal dose assessments from CT of various body regions at different exposure settings. In the institutional review board-approved second part, the algorithm was validated against patient-specific MC simulations performed on CT data of 29 pregnant patients (gestational ages 8-35 weeks) who underwent CT. Furthermore, the tool was compared with a commercially available software. A user-friendly web-based interface for fetal dose calculations was created. RESULTS: Weighted CTDI values obtained from MC simulations were in excellent agreement with measurements performed on the 2 CT systems (average error, 4%). The median fetal dose from abdominal CT in pregnant patients was 2.7 mGy, showing moderate correlation with maternal perimeter (r = 0.69). The algorithm provided accurate estimates of fetal doses (average error, 11%), being more accurate than the commercially available tool. The web-based interface (www.fetaldose.org) enabling vendor-independent calculations of fetal doses from CT requires the input of gestational age, volume CTDI, tube voltage, and scan region. CONCLUSIONS: A tool for fetal dose assessments from CT of pregnant patients was developed and validated being freely available on a user-friendly web interface.


Assuntos
Feto/efeitos da radiação , Internet , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos , Abdome/diagnóstico por imagem , Feminino , Humanos , Lactente , Método de Monte Carlo , Imagens de Fantasmas , Gravidez , Radiometria , Software
9.
Invest Radiol ; 55(8): 515-523, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32209815

RESUMO

OBJECTIVES: The aim of the article was to evaluate the lesion detectability, image quality, and radiation dose of a dedicated clinical spiral breast computed tomography (CT) system equipped with a photon-counting detector, and to propose optimal scan parameter settings to achieve low patient dose levels and optimal image quality. METHODS: A breast phantom containing inserts mimicking microcalcifications (diameters 196, 290, and 400 µm) and masses (diameters 1.8, 3.18, 4.76, and 6.32 mm) was examined in a spiral breast CT system with systematic variations of x-ray tube currents between 5 and 125 mA, using 2 slabs of 100 and 160 mm. Signal-to-noise ratio and contrast-to-noise ratio measurements were performed by region of interest analysis. Two experienced radiologists assessed the detectability of the inserts. The average absorbed dose was calculated in Monte Carlo simulations. RESULTS: Microcalcifications in diameters of 290 and 400 µm and masses in diameters of 3.18, 4.76, and 6.32 mm were visible for all tube currents between 5 and 125 mA. Soft tissue masses in a diameter of 1.8 mm were visible at tube currents of 25 mA and higher. Microcalcifications with a diameter of 196 µm were detectable at a tube current of 25 mA and higher in the small, and at a tube current of 40 mA and higher in the large slab. For the small and large breast, at a tube current of 25 and 40 mA, an average dose value of 4.30 ± 0.01 and 5.70 ± 0.02 mGy was calculated, respectively. CONCLUSIONS: Optimizing tube current of spiral breast CT according to the breast size enables the visualization of microcalcifications as small as 196 µm while keeping dose values in the range of conventional mammography.


Assuntos
Mama/diagnóstico por imagem , Imagens de Fantasmas , Fótons , Doses de Radiação , Tomografia Computadorizada Espiral/instrumentação , Calcinose/diagnóstico por imagem , Feminino , Humanos , Método de Monte Carlo , Razão Sinal-Ruído
10.
Eur Radiol ; 29(12): 6790-6793, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31278575

RESUMO

OBJECTIVES: To assess the impact of patient off-centering on organ dose and image noise for head and thoracoabdominal CT in a pediatric phantom. METHODS: An anthropomorphic phantom simulating a 5-year-old child was used. Semiconductor dosimeters were placed in various cranial and thoracoabdominal organs. Head and thoracoabdominal CT were performed using automatic tube current modulation (ATCM) and default bowtie filters. The phantom was imaged repeatedly at vertical table positions ranging from - 6 to + 6 cm from the 0-position. Tube current time products (TCTP), organ doses, and image noise were recorded. Scatter radiation was measured in the thyroid for head CT. The effect of ATCM and bowtie filters was assessed. RESULTS: Depending on patient position, organ doses differed up to 22% for the supratentorial brain, 34% for the infratentorial brain, 19% for the eyes, 28% for the lungs, 25% for the stomach, and 22% for the liver compared with those in the 0-position. The relation between position and dose was linear and mainly affected by the bowtie filter in head CT, while it was quadratic and affected by ATCM and bowtie filter in thoracoabdominal CT. It further depended on the relative position of each organ to the isocenter. An inverse relation was found between position and image noise. Scatter radiation was not significantly related to patient positioning (p = 0.21). CONCLUSIONS: In pediatric CT, vertical patient positioning had a substantial impact on radiation dose with differences of up to 34%, depending on the body region and location of each individual organ. KEY POINTS: • Patient off-centering has a substantial impact on organ radiation dose and image noise in pediatric CT. • Impact of patient off-centering on radiation dose and noise differs between head and thoracoabdominal CT. • Differences are caused by both ATCM and bowtie filter in thoracoabdominal CT, but mainly by bowtie filter in head CT.


Assuntos
Encéfalo/diagnóstico por imagem , Posicionamento do Paciente/métodos , Imagens de Fantasmas , Doses de Radiação , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Pré-Escolar , Humanos , Espalhamento de Radiação , Proteína Tumoral 1 Controlada por Tradução
11.
Invest Radiol ; 54(7): 409-418, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30829942

RESUMO

OBJECTIVES: The purpose of this work is to present the data obtained from the first clinical in vivo application of a new dedicated spiral breast computed tomography (B-CT) equipped with a photon-counting detector. MATERIALS AND METHODS: The institutional review board approved this retrospective study. Twelve women referred for breast cancer screening were included and underwent bilateral spiral B-CT acquired in prone position. Additional sonography was performed in case of dense breast tissue or any B-CT findings. In 3 women, previous mammography was available for comparison. Soft tissue (ST) and high-resolution (HR) images were reconstructed. Two independent radiologists performed separately the readout for subjective image quality and for imaging findings detection. Objective image quality evaluation was performed in consensus and included spatial resolution, contrast resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio. All women were asked to report about positioning comfort and overall comfort during data acquisition. RESULTS: The major pectoral muscle was included in 15 breast CT scans (62.5%); glandular component was partially missing in 2 (8.3%) of the 24 scanned breasts. A thin "ring artifact" was present in all scans but had no influence on image interpretations; no other artifacts were present. Subjective image quality assessment showed excellent agreement between the 2 readers (κ = 1). Three masses were depicted in B-CT and were confirmed as simple cysts in sonography. Additional 5 simple cysts and 2 solid benign lesions were identified only in sonography. A total of 12 calcifications were depicted with a median size of 1.1 mm (interquartile range, 0.7-1.7 mm) on HR and 1.4 mm (interquartile range, 1.1-1.8 mm) on ST images. Median SNRgl, SNRfat, and contrast-to-noise ratio were significantly higher in ST than in HR reconstructions (each, P < 0.001). A mild discomfort due to positioning of the rib cage on the table was reported by 2 women (16.7%); otherwise, no discomfort was reported. CONCLUSIONS: The new dedicated B-CT equipped with a photon-counting detector provides high-quality images with potential for screening of breast cancer along with minor patient discomfort.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/instrumentação , Mamografia/métodos , Tomografia Computadorizada Espiral/instrumentação , Tomografia Computadorizada Espiral/métodos , Mama/diagnóstico por imagem , Densidade da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Razão Sinal-Ruído
12.
Med Phys ; 46(2): 544-549, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30578731

RESUMO

PURPOSE: To evaluate the possibility of lowering radiation dose from a localizer radiograph (LR) using a tin spectral shaping filter and to investigate the effect of this adaptation on the radiation dose and image quality of subsequent computed tomography (CT) examination. METHODS: The study utilized a set of semianthropomorphic abdomen phantoms, representing small, medium, and large patients. The LR scans were performed with and without a tin spectral shaping filter using various kVp/mA settings. The tube current values of spiral CT examinations following the LR were assessed to evaluate the effect of LR settings on automatic exposure control (AEC). The image quality of CT examinations with various LRs was evaluated by measuring image noise in several regions-of-interest. Organ dose values from LR scans were derived from Monte Carlo simulations performed on a set of virtual anthropomorphic phantoms and the effective dose (ED) values were calculated. RESULTS: The radiation dose from the LR can be strongly reduced by using a tin spectral shaping filter (P < 0.001). The optimal settings of the LR scan depend on the size of the scanned subject: for small and medium size subjects, the combination of a tin spectral shaping filter with 100 kVp and 20 mA resulted in the lowest possible radiation dose (ED = 0.007 mGy) without compromising the AEC and image quality of subsequent CT. In contrast, the LR settings of 100 kVp with a tin spectral shaping filter and the tube current values of 20 and 35 mA in large subject (47.4 cm in diameter) resulted in significant variation of the TCM values (11.1% and 8.4%, respectively) and the corresponding increase of noise by >5% in subsequent CT examination. For all investigated phantom sizes, the combination of 100 Sn kV with a tin spectral shaping filter and tube current values of 75 mA results in the lowest possible radiation dose, while still keeping the AEC function unchanged. CONCLUSION: The study indicated that tin spectral shaping filtration can be applied to LRs for radiation dose reduction, but such adaptation needs to take patient size into account.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Estanho , Tomografia Computadorizada por Raios X
13.
Invest Radiol ; 52(2): 81-86, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27518213

RESUMO

INTRODUCTION: Recent studies have shown a substantial reduction of radiation dose from computed tomography (CT) scans down to 0.1 mSv for lung cancer screening and cardiac examinations, when applying optimization techniques. Hence, CT localizer radiographs (LRs) might now be considered a significant contributor to the total dose of the CT examination. We investigated in our study the potential for reducing dose of the LRs by adapting the patient-specific acquisition parameters of the LR. MATERIALS AND METHODS: Localizer radiographs covering the lungs were acquired on 2 clinical scanners (64 slices, conventional detector [CD]; 96 slices, fully integrated detector [ID]) for 3 semianthropomorphic phantoms, representing a slim, a normal, and an obese adult. Starting at 120-kV tube voltage and 250-mA current were reduced until the image quality of the LR, and thereby the accuracy of the automatic exposure control was compromised; this was defined as a deviation of measured attenuation values in the center of the LR of more than 5% from the reference values measured at the highest tube voltage and current. Subsequent Monte Carlo calculations on anthropomorphic phantoms were performed to calculate organ and effective dose values for the respective optimal settings. In addition, effective dose values normalized to CTDIvol for tube voltages ranging from 60 to 160 kV were determined for the different combinations of phantom sizes, sexes, and LR views to evaluate dose efficiency. RESULTS: For the CD scanner, the optimal LR settings depended strongly on phantom size. Higher tube voltage and current were necessary for the larger phantoms. The ID scanner showed uncompromised LR quality for all phantoms using the lowest possible tube voltage-tube current combination of 80 kV and 20 mA. Depending on patient size and LR direction, effective dose values for the optimal settings ranged from 6 to 53 µSv and 3 to 11 µSv for the CD and ID scanner, respectively. For the example of an anterior-posterior LR on a normal patient, using the optimal settings instead of the standard settings on the ID scanner reduced LR dose from 53 µSv (120 kV, 30 mA) to 10 µSv (80 kV, 20 mA). The simulations for the different tube voltages show that effective dose and CTDIvol behave similarly for different views and patient sizes. However, the tube voltage level itself impacts the relationship between CTDIvol and effective dose, by up to a factor of 2. DISCUSSION: Dose from LRs may contribute significantly to the total effective dose of low-dose CT examinations such as lung cancer screening. Optimal LR settings can reduce LR dose substantially, but adaptations have to consider scanner characteristics, detector technology, and patient size. Thus, for low-dose CT examinations, such as cardiac examinations and lung cancer screening, LR optimization may result in a significant dose reduction and thereby in a substantial reduction of total dose.


Assuntos
Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Adulto , Humanos , Método de Monte Carlo
14.
PLoS One ; 11(5): e0155722, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27203720

RESUMO

PURPOSE: Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients' lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. MATERIALS AND METHODS: This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. RESULTS: As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100'000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). CONCLUSION: Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Idoso , Detecção Precoce de Câncer/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA