RESUMO
Increasing evidence suggests that in Amyotrophic Lateral Sclerosis (ALS) mutated RNA binding proteins acquire aberrant functions, leading to altered RNA metabolism with significant impact on encoded protein levels. Here, by taking advantage of a human induced pluripotent stem cell-based model, we aimed to gain insights on the impact of ALS mutant FUS on the motoneuron proteome. Label-free proteomics analysis by mass-spectrometry revealed upregulation of proteins involved in catabolic processes and oxidation-reduction, and downregulation of cytoskeletal proteins and factors directing neuron projection. Mechanistically, proteome alteration does not correlate with transcriptome changes. Rather, we observed a strong correlation with selective binding of mutant FUS to target mRNAs in their 3'UTR. Novel validated targets, selectively bound by mutant FUS, include genes previously involved in familial or sporadic ALS, such as VCP, and regulators of membrane trafficking and cytoskeleton remodeling, such as ASAP1. These findings unveil a novel mechanism by which mutant FUS might intersect other pathogenic pathways in ALS patients' motoneurons.
Assuntos
Regiões 3' não Traduzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Mutação , Proteoma , Proteômica , Proteína FUS de Ligação a RNA/genética , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Proteômica/métodosRESUMO
While gene expression dynamics have been extensively cataloged during hematopoietic differentiation in the adult, less is known about transcriptome diversity of human hematopoietic stem cells (HSCs) during development. To characterize transcriptional and post-transcriptional changes in HSCs during development, we leveraged high-throughput genomic approaches to profile miRNAs, lincRNAs, and mRNAs. Our findings indicate that HSCs manifest distinct alternative splicing patterns in key hematopoietic regulators. Detailed analysis of the splicing dynamics and function of one such regulator, HMGA2, identified an alternative isoform that escapes miRNA-mediated targeting. We further identified the splicing kinase CLK3 that, by regulating HMGA2 splicing, preserves HMGA2 function in the setting of an increase in let-7 miRNA levels, delineating how CLK3 and HMGA2 form a functional axis that influences HSC properties during development. Collectively, our study highlights molecular mechanisms by which alternative splicing and miRNA-mediated post-transcriptional regulation impact the molecular identity and stage-specific developmental features of human HSCs.
Assuntos
Processamento Alternativo/genética , Proteína HMGA2/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteína HMGA2/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator proteins that were conserved across independent cohorts. A 10-protein transcriptional module-centered around a TEAD4-MYCN positive feedback loop-emerged as the regulatory driver of the high-risk subtype associated with MYCN amplification. Silencing of either gene collapsed MYCN-amplified (MYCNAmp) neuroblastoma transcriptional hallmarks and abrogated viability in vitro and in vivo Consistently, TEAD4 emerged as a robust prognostic marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional coactivators YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of MYCN-deregulated neuroblastomas.Significance: Despite progress in understanding of neuroblastoma genetics, little progress has been made toward personalized treatment. Here, we present a framework to determine the downstream effectors of the genetic alterations sustaining neuroblastoma subtypes, which can be easily extended to other tumor types. We show the critical effect of disrupting a 10-protein module centered around a YAP/TAZ-independent TEAD4-MYCN positive feedback loop in MYCNAmp neuroblastomas, nominating TEAD4 as a novel candidate for therapeutic intervention. Cancer Discov; 8(5); 582-99. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Musculares/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Aciltransferases , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas Musculares/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Estadiamento de Neoplasias , Neuroblastoma/diagnóstico , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Ativação TranscricionalRESUMO
Accumulating evidences indicate that different long non-coding RNAs (lncRNAs) might play a relevant role in tumorigenesis, with their expression and function already associated to cancer development and progression. CCAAT/enhancer-binding protein-α (CEBPA) is a critical regulator of myeloid differentiation whose inactivation contributes to the development of acute myeloid leukemia (AML). Mutations in C/EBPα occur in around 10% of AML cases, leading to the expression of a 30-kDa dominant negative isoform (C/EBPα-p30). In this study, we identified the oncogenic urothelial carcinoma associated 1 (UCA1) lncRNA as a novel target of the C/EBPα-p30. We show that wild-type C/EBPα and C/EBPα-p30 isoform can bind the UCA1 promoter but have opposite effects on UCA1 expression. While wild-type C/EBPα represses, C/EBPα-p30 can induce UCA1 transcription. Notably, we also show that UCA1 expression increases in cytogenetically normal AML cases carrying biallelic CEBPA mutations. Furthermore, we demonstrate that UCA1 sustains proliferation of AML cells by repressing the expression of the cell cycle regulator p27kip1. Thus, we identified, for the first time, an oncogenic lncRNA functioning in concert with the dominant negative isoform of C/EBPα in AML.
Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide/genética , RNA Longo não Codificante/genética , Doença Aguda , Biomarcadores Tumorais/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Immunoblotting , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
CCAAT/enhancer-binding protein-α (CEBPA) is a critical regulator of myeloid differentiation. Disruption of CEBPA function contributes to the development of acute myeloid leukemia (AML). CEBPA regulates a large number of protein coding genes of which several were shown to contribute to CEBPA function. In this study, we expand the analysis of CEBPA transcriptional targets to the newly identified class of long non-coding RNAs. We show that lncRNAs are a main component of the transcriptional program driven by C/EBPα and that many of these are also induced during granulocytic differentiation of AML cell lines supporting their relevance in proliferation arrest and differentiation.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , HumanosRESUMO
Increased expression or aberrant activation of c-Myc plays an important role in leukemogenesis. Here, we show that in acute myeloid leukemia (AML), c-Myc directly controls the expression of EZH2, a component of the Polycomb repressive complex 2, and miR-26a. miR-26a is downregulated in primary blasts from AML patients and, during myeloid differentiation of AML cells, is induced together with a decrease in c-Myc and Ezh2 levels. Previously, EZH2 was shown to be regulated by miR-26a at the translational levels in lymphomas. However, we demonstrate that in AML, the variation of EZH2 mainly depends on c-Myc transcriptional control. We also show that enforced expression of miR-26a in AML cells is able to inhibit cell cycle progression by downregulating cyclin E2 expression. In addition, increased levels of miR-26a potentiate the antiproliferative effects of 1,25-dihydroxyvitamin D(3) (VitD) and stimulate myeloid differentiation. Our results identify new molecular targets of c-Myc in AML and highlight miR-26a attractiveness as a therapeutic target in leukemia.