Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
FEBS J ; 291(1): 61-69, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843490

RESUMO

The SARS-CoV-2 main protease (Mpro ) holds significant importance as a biological target in combating coronaviruses due to its importance in virus replication. Considering the emergence of novel SARS-CoV-2 variants and the mutations observed in the Mpro sequence, we hypothesized that these mutations may have a potential impact on the protease's specificity. To test this, we expressed Mpro corresponding to the original strain and variants Beta1, Beta2, and Omicron and analyzed their activity on protein-based and peptide substrates. Although we observed differential activity on the protein-based substrate, there was very little difference when analyzed on the peptide substrate. We conclude that mutations on the Mpro sequence, despite having a minor effect on a peptide substrate cleavage, did not change the catalytic site environment enough to build resistance to inhibition. Therefore, we propose that inhibitors initially designed for the Mpro of the original strain will be effective in all the variants. Thus, Mpro is likely to continue to be a target of therapeutic interest as mutations in its sequence are rare and, as we show here, have a minor effect on the protease's recognition of peptide-based molecules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteínas não Estruturais Virais/genética , Peptídeos/genética , Proteases 3C de Coronavírus/genética , Inibidores de Proteases/química , Antivirais/farmacologia , Peptídeo Hidrolases
2.
J Biol Chem ; 299(6): 104792, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150321

RESUMO

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Assuntos
Caspase 8 , Necroptose , Oxidantes , Fatores de Necrose Tumoral , Animais , Camundongos , Caspase 8/química , Caspase 8/metabolismo , Inflamação/metabolismo , Necroptose/efeitos dos fármacos , Oxidantes/metabolismo , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Fatores de Necrose Tumoral/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Peroxidase , Lactoperoxidase , Domínio Catalítico
3.
Biochem J ; 479(14): 1533-1542, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35789254

RESUMO

A patient diagnosed with multiple myeloma, bicuspid aortic valve, and Von Hippel-Lindau syndrome underwent whole-exome sequencing seeking a unified genetic cause for these three pathologies. The patient possessed a single-point mutation of arginine to cysteine (R24C) in the N-terminal region(pro-domain) of matrix metalloproteinase 9 (MMP-9). The pro-domain interacts with the catalytic site of this enzyme rendering it inactive. MMP-9 has previously been associated with all three pathologies suffered by the patient. We hypothesized that the observed mutation in the pro-domain would influence the activity of this enzyme. We expressed recombinant versions of MMP-9 and an investigation of their biochemical properties revealed that MMP-9 R24C is a constitutively active zymogen. To our knowledge, this is the first example of a mutation that discloses catalytic activity in the pro-form in any of the 24 human MMPs.


Assuntos
Doença da Válvula Aórtica Bicúspide , Mieloma Múltiplo , Doença de von Hippel-Lindau , Mutação com Ganho de Função , Humanos , Metaloproteinase 9 da Matriz/genética , Mieloma Múltiplo/complicações , Mieloma Múltiplo/genética , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/genética
4.
Cell Rep ; 36(8): 109614, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433041

RESUMO

Zoonotic pathogens, such as COVID-19, reside in animal hosts before jumping species to infect humans. The Carnivora, like mink, carry many zoonoses, yet how diversity in host immune genes across species affect pathogen carriage is poorly understood. Here, we describe a progressive evolutionary downregulation of pathogen-sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerization domain leucine-rich repeat receptors (NLRs), acquisition of a unique caspase-1/-4 effector fusion protein that processes gasdermin D pore formation without inducing rapid lytic cell death, and the formation of a caspase-8 containing inflammasome that inefficiently processes interleukin-1ß. Inflammasomes regulate gut immunity, but the carnivorous diet has antimicrobial properties that could compensate for the loss of these immune pathways. We speculate that the consequences of systemic inflammasome downregulation, however, can impair host sensing of specific pathogens such that they can reside undetected in the Carnivora.


Assuntos
Carnívoros/metabolismo , Evolução Molecular , Inflamassomos/metabolismo , Zoonoses/patologia , Animais , Caspase 1/genética , Caspase 1/metabolismo , Caspase 8/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Morte Celular , Linhagem Celular , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhi/patogenicidade , Zoonoses/imunologia , Zoonoses/parasitologia
5.
FEBS J ; 288(4): 1259-1270, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619291

RESUMO

Many proteases recognize their substrates with high specificities, with this in mind, it should theoretically be possible to utilize the substrate binding cleft of a protease as a scaffold to engineer an affinity reagent. In this study, we sought to develop reagents that would differentiate between substrates and products of proteolysis, based on a caspase 7 scaffold. Firstly, we engineered a form of caspase 7 that can undergo conversion to a substrate binding conformation without catalysis. Seeking to generate a product-only trap, we further engineered this construct by incorporating mutations that compensate for the generation of a negative charge in the neo C terminus of a newly generated product. This was accomplished with only three substitutions within the substrate binding cleft. Moreover, the affinity of the product trap for peptides was comparable to the affinity of caspase 7 to parental substrates. Finally, generation of a hybrid fluorescent protein with the product trap provided a reagent that specifically recognized apoptotic cells and highlights the versatility of such an approach in developing affinity and imaging agents for a variety of cysteine and serine proteases.


Assuntos
Caspase 7/genética , Proteínas Mutantes/metabolismo , Mutação , Engenharia de Proteínas/métodos , Apoptose/efeitos dos fármacos , Sítios de Ligação/genética , Caspase 7/química , Caspase 7/metabolismo , Linhagem Celular Tumoral , Endopeptidases/metabolismo , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Ligação Proteica , Domínios Proteicos , Proteólise , Especificidade por Substrato , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
6.
J Enzyme Inhib Med Chem ; 35(1): 1387-1402, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32633155

RESUMO

Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.


Assuntos
Aldeídos/farmacologia , Compostos Aza/farmacologia , Desenho de Fármacos , Cetonas/farmacologia , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Aldeídos/química , Animais , Compostos Aza/química , Bovinos , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cetonas/química , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade
7.
J Biol Chem ; 295(32): 11292-11302, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554464

RESUMO

Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway, signaled by caspase-1, and the noncanonical pathway, regulated by mouse caspase-11 and human caspase-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors prointerleukin-18 and prointerleukin-1ß (pro-IL18/pro-IL1ß). Here, in vitro cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1'-P4', the C-terminal gasdermin D region adjacent to the cleavage site, influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1'-P4' region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable with that of gasdermin D cleavage. Pro-IL1ß cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1'-P4' region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11, i.e. caspase-4 and caspase-5, are ruled by the same mechanism. We propose that P1'-P4'-based inhibitors could be exploited to specifically target inflammatory caspases.


Assuntos
Caspases/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Ligação a Fosfato/fisiologia , Piroptose , Animais , Catálise , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Proteólise , Especificidade por Substrato
8.
J Biol Chem ; 295(28): 9567-9582, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439802

RESUMO

Natural killer (NK) cells are key innate immunity effectors that combat viral infections and control several cancer types. For their immune function, human NK cells rely largely on five different cytotoxic proteases, called granzymes (A/B/H/K/M). Granzyme B (GrB) initiates at least three distinct cell death pathways, but key aspects of its function remain unexplored because selective probes that detect its activity are currently lacking. In this study, we used a set of unnatural amino acids to fully map the substrate preferences of GrB, demonstrating previously unknown GrB substrate preferences. We then used these preferences to design substrate-based inhibitors and a GrB-activatable activity-based fluorogenic probe. We show that our GrB probes do not significantly react with caspases, making them ideal for in-depth analyses of GrB localization and function in cells. Using our quenched fluorescence substrate, we observed GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with GrB attacked MDA-MB-231 target cells, and active GrB influenced its target cell-killing efficiency. In summary, we have developed a set of molecular tools for investigating GrB function in NK cells and demonstrate noninvasive visual detection of GrB with an enzyme-activated fluorescent substrate.


Assuntos
Corantes Fluorescentes/química , Granzimas , Imagem Óptica , Peptídeos/química , Linfócitos T/enzimologia , Linhagem Celular Tumoral , Granzimas/química , Granzimas/metabolismo , Humanos
9.
J Med Chem ; 63(6): 3359-3369, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32142286

RESUMO

Cytotoxic T-lymphocytes (CTLs) and natural killer cells (NKs) kill compromised cells to defend against tumor and viral infections. Both effector cell types use multiple strategies to induce target cell death including Fas/CD95 activation and the release of perforin and a group of lymphocyte granule serine proteases called granzymes. Granzymes have relatively broad and overlapping substrate specificities and may hydrolyze a wide range of peptidic epitopes; it is therefore challenging to identify their natural and synthetic substrates and to distinguish their localization and functions. Here, we present a specific and potent substrate, an inhibitor, and an activity-based probe of Granzyme A (GrA) that can be used to follow functional GrA in cells.


Assuntos
Cumarínicos/farmacologia , Corantes Fluorescentes/farmacologia , Granzimas/análise , Oligopeptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/toxicidade , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Granzimas/química , Humanos , Oligopeptídeos/síntese química , Oligopeptídeos/toxicidade , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/toxicidade , Especificidade por Substrato
10.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142688
11.
J Biol Chem ; 295(51): 17624-17631, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454002

RESUMO

Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/enzimologia , Serina Proteases/metabolismo , Animais , Anticorpos/química , Anticorpos/imunologia , Candida albicans/fisiologia , DNA/metabolismo , Escherichia coli/fisiologia , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/imunologia , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Neutrófilos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Células RAW 264.7 , Serina Proteases/química , Serina Proteases/imunologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
12.
Cell Death Differ ; 27(2): 451-465, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209360

RESUMO

Caspases participate in regulated cell death mechanisms and are divided into apoptotic and proinflammatory caspases. The main problem in identifying the unique role of a particular caspase in the mechanisms of regulated cell death is their overlapping substrate specificity; caspases recognize and hydrolyze similar peptide substrates. Most studies focus on examining the non-prime sites of the caspases, yet there is a need for novel and more precise chemical tools to identify the molecular participants and mechanisms of programmed cell death pathways. Therefore, we developed an innovative chemical approach that examines the prime area of the caspase active sites. This method permits the agile parallel solid-phase synthesis of caspase inhibitors with a high yield and purity. Using synthesized compounds we have shown the similarities and differences in the prime area of the caspase active site and, as a proof of concept, we demonstrated the exclusive role of caspase-8 in necroptosis.


Assuntos
Caspases/metabolismo , Neoplasias do Colo/metabolismo , Sítios de Ligação/efeitos dos fármacos , Inibidores de Caspase/síntese química , Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Caspases/química , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Células HT29 , Humanos
13.
Chem Sci ; 10(36): 8461-8477, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31803426

RESUMO

Human cysteine cathepsins constitute an 11-membered family of proteases responsible for degradation of proteins in cellular endosomal-lysosomal compartments as such, they play important roles in antigen processing, cellular stress signaling, autophagy, and senescence. Moreover, for many years these enzymes were also linked to tumor growth, invasion, angiogenesis and metastasis when upregulated. Individual biological roles of each cathepsin are difficult to establish, because of their redundancy and similar substrate specificities. Selective chemical tools that enable imaging of individual cathepsin activities in living cells, tumors, and the tumor microenvironment may provide a better insight into their functions. In this work, we used HyCoSuL technology to profile the substrate specificity of human cathepsin B. The use of unnatural amino acids in the substrate library enabled us to uncover the broad cathepsin B preferences that we utilized to design highly-selective substrates and fluorescent activity-based probes (ABPs). We further demonstrated that Cy5-labeled MP-CB-2 probe can selectively label cathepsin B in eighteen cancer cell lines tested, making this ABP highly suitable for other biological setups. Moreover, using Cy5-labelled MP-CB-2 we were able to demonstrate by fluorescence microscopy that in cancer cells cathepsins B and L share overlapping, but not identical subcellular localization.

14.
ACS Infect Dis ; 5(10): 1802-1812, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31355632

RESUMO

Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 µM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (ß1), trypsin-type (ß2), and chymotrypsin-type (ß5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the ß5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S ß2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 µM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome's importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Caspases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Células Hep G2 , Humanos , Leupeptinas , Oligopeptídeos/farmacologia
15.
J Immunol ; 203(3): 736-748, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209100

RESUMO

The pyroptotic cell death effector gasdermin D (GSDMD) is required for murine models of hereditary inflammasome-driven, IL-1ß-dependent, autoinflammatory disease, making it an attractive therapeutic target. However, the importance of GSDMD for more common conditions mediated by pathological IL-1ß activation, such as gout, remain unclear. In this study, we address whether GSDMD and the recently described GSDMD inhibitor necrosulfonamide (NSA) contribute to monosodium urate (MSU) crystal-induced cell death, IL-1ß release, and autoinflammation. We demonstrate that MSU crystals, the etiological agent of gout, rapidly activate GSDMD in murine macrophages. Despite this, the genetic deletion of GSDMD or the other lytic effector implicated in MSU crystal killing, mixed lineage kinase domain-like (MLKL), did not prevent MSU crystal-induced cell death. Consequently, GSDMD or MLKL loss did not hinder MSU crystal-mediated release of bioactive IL-1ß. Consistent with in vitro findings, IL-1ß induction and autoinflammation in MSU crystal-induced peritonitis was not reduced in GSDMD-deficient mice. Moreover, we show that the reported GSDMD inhibitor, NSA, blocks inflammasome priming and caspase-1 activation, thereby preventing pyroptosis independent of GSDMD targeting. The inhibition of cathepsins, widely implicated in particle-induced macrophage killing, also failed to prevent MSU crystal-mediated cell death. These findings 1) demonstrate that not all IL-1ß-driven autoinflammatory conditions will benefit from the therapeutic targeting of GSDMD, 2) document a unique mechanism of MSU crystal-induced macrophage cell death not rescued by pan-cathepsin inhibition, and 3) show that NSA inhibits inflammasomes upstream of GSDMD to prevent pyroptotic cell death and IL-1ß release.


Assuntos
Gota/patologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Ácido Úrico/metabolismo , Acrilamidas/farmacologia , Animais , Caspase 1/metabolismo , Catepsinas/antagonistas & inibidores , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofuranos/farmacologia , Peritonite/induzido quimicamente , Peritonite/imunologia , Peritonite/patologia , Proteínas de Ligação a Fosfato/genética , Proteínas Quinases/genética , Estirenos/farmacologia , Sulfonamidas/farmacologia
16.
Cell Rep ; 27(12): 3646-3656.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216481

RESUMO

Neutrophil granule serine proteases contribute to immune responses through cleavage of microbial toxins and structural proteins. They induce tissue damage and modulate inflammation if levels exceed their inhibitors. Here, we show that the intracellular protease inhibitors Serpinb1a and Serpinb6a contribute to monocyte and neutrophil survival in steady-state and inflammatory settings by inhibiting cathepsin G (CatG). Importantly, we found that CatG efficiently cleaved gasdermin D (GSDMD) to generate the signature N-terminal domain GSDMD-p30 known to induce pyroptosis. Yet GSDMD deletion did not rescue neutrophil survival in Sb1a.Sb6a-/- mice. Furthermore, Sb1a.Sb6a-/- mice released high levels of pro-inflammatory cytokines upon endotoxin challenge in vivo in a CatG-dependent manner. Canonical inflammasome activation in Sb1a.Sb6a-/- macrophages showed increased IL-1ß release that was dependent on CatG and GSDMD. Together, our findings demonstrate that cytosolic serpins expressed in myeloid cells prevent cell death and regulate inflammatory responses by inhibiting CatG and alternative activation of GSDMD.


Assuntos
Catepsina G/antagonistas & inibidores , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Monócitos/patologia , Neutrófilos/patologia , Proteínas de Ligação a Fosfato/metabolismo , Serpinas/fisiologia , Animais , Apoptose , Endotoxinas/toxicidade , Feminino , Inflamassomos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Necrose , Neutrófilos/metabolismo , Proteínas de Ligação a Fosfato/genética , Piroptose
17.
Cell Death Differ ; 26(12): 2695-2709, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30976094

RESUMO

Most caspases can be positioned unambiguously within the regulated cell death networks of apoptosis and pyroptosis, but the role of caspase-2, a highly conserved protease within the family, remains enigmatic. This is mainly due to lack of selective chemical and biochemical tools for the investigation of this protease. In this study, we used our hybrid combinatorial substrate library (HyCoSuL) approach to broadly profile caspase-2 substrate specificity using peptide scanning libraries. This screen uncovered previously unknown caspase-2 peptidyl substrate preferences, which were further used to develop caspase-2 selective fluorogenic substrates and covalent, irreversible AOMK inhibitors. Finally, we used the champion inhibitor (NH-23-C2) in reversine-treated HCT-116 colon cancer cells to selectively block caspase-2 activity and caspase-2-mediated MDM-2 cleavage. In addition, we showed that NH-23-C2 does not block caspase-3 or caspase-8, which makes it a powerful chemical tool to dissect the true role of caspase-2 in various biological setups.


Assuntos
Caspase 2/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Morfolinas/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Purinas/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Morfolinas/farmacologia , Purinas/farmacologia , Especificidade por Substrato
18.
Cell Death Differ ; 26(2): 229-244, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29748600

RESUMO

Apical caspases initiate and effector caspases execute apoptosis. Reagents that can distinguish between caspases, particularly apical caspases-8, 9, and 10 are scarce and generally nonspecific. Based upon a previously described large-scale screen of peptide-based caspase substrates termed HyCoSuL, we sought to develop reagents to distinguish between apical caspases in order to reveal their function in apoptotic cell death paradigms. To this end, we selected tetrapeptide-based sequences that deliver optimal substrate selectivity and converted them to inhibitors equipped with a detectable tag (activity-based probes-ABPs). We demonstrate a strong relationship between substrate kinetics and ABP kinetics. To evaluate the utility of selective substrates and ABPs, we examined distinct apoptosis pathways in Jurkat T lymphocyte and MDA-MB-231 breast cancer lines triggered to undergo cell death via extrinsic or intrinsic apoptosis. We report the first highly selective substrate appropriate for quantitation of caspase-8 activity during apoptosis. Converting substrates to ABPs promoted loss-of-activity and selectivity, thus we could not define a single ABP capable of detecting individual apical caspases in complex mixtures. To overcome this, we developed a panel strategy utilizing several caspase-selective ABPs to interrogate apoptosis, revealing the first chemistry-based approach to uncover the participation of caspase-8, but not caspase-9 or -10 in TRAIL-induced extrinsic apoptosis. We propose that using select panels of ABPs can provide information regarding caspase-8 apoptotic signaling more faithfully than can single, generally nonspecific reagents.


Assuntos
Caspase 10/isolamento & purificação , Caspase 8/isolamento & purificação , Caspase 9/isolamento & purificação , Peptídeos/química , Apoptose/genética , Caspase 10/química , Caspase 10/genética , Caspase 3/química , Caspase 3/genética , Caspase 3/isolamento & purificação , Caspase 8/química , Caspase 8/genética , Caspase 9/química , Caspase 9/genética , Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Humanos , Células Jurkat , Cinética , Transdução de Sinais , Especificidade por Substrato
19.
Nanoscale ; 11(2): 742-751, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30566168

RESUMO

The ability to label active caspase-3 represents a useful pharmacodynamic strategy to determine the efficacy of anti-tumour drugs. Activity-based probes (ABPs) provide a method for the labelling of activated caspases and the recent development of hybrid combinatorial substrate libraries (HyCoSuL) has allowed for the generation of highly selective ABPs to discriminately label these proteases. Here using this approach, a novel caspase-3 selective ABP (CS1) has been developed and validated in apoptotic cells to selectively bind caspase-3 over the closely related caspase-7. However, a critical bottleneck for ABPs is their cell penetrance and therefore this cell-impermeable CS1 probe was subsequently formulated into PLGA-based nanoparticles (CS1-NPs). We demonstrate the ability of these particles to be taken up by the cells and facilitate intracellular delivery of the ABP to effectively label caspase 3 in response to apoptotic stimuli. This work forms the foundation of a novel approach for the labelling of caspase 3 and may have downstream utility to measure real time apoptosis in tumours and other organs.


Assuntos
Caspase 3/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeos/química , Apoptose , Caspase 3/análise , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Citoplasma/metabolismo , Humanos , Estrutura Molecular , Nanopartículas/ultraestrutura , Biblioteca de Peptídeos , Peptídeos/metabolismo , Especificidade por Substrato
20.
Sci Rep ; 8(1): 15998, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375474

RESUMO

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) belongs to the CD clan of cysteine proteases. MALT1 is a unique enzyme among this clan because it recognizes the basic amino acid arginine in the P1 pocket. Previous studies carried out with natural amino acids revealed the substrate specificity of the P4-P1 pockets of MALT1 but have provided only limited information about the catalytic preferences of this enzyme. In this study, we exploited Hybrid Combinatorial Substrate Library and Internally Quenched Fluorescence substrate technologies to interrogate the extended substrate specificity profile of the S5-S2' active site pockets using unnatural amino acids. This strategy resulted in the design of a peptide-based fluorogenic substrate, which exhibited significant activity toward MALT1. Subsequently, the substrate sequence was further utilized to develop potent, irreversible activity-based probes.


Assuntos
Sequência de Aminoácidos/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Peptídeos/química , Aminoácidos/química , Aminoácidos/genética , Animais , Arginina/química , Cinética , Camundongos , Modelos Moleculares , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Peptídeos/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA