Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890411

RESUMO

Ribosome-inactivating proteins, including Saporin toxin, have found application in the search for innovative alternative cancer therapies to conventional chemo- and radiotherapy. Saporin's main mechanism of action involves the inhibition of cytoplasmic protein synthesis. Its strong theoretical efficacy is counterbalanced by negligible cell uptake and diffusion into the cytosol. In this work, we demonstrate that by immobilizing Saporin on iron oxide nanoparticles coated with an amphiphilic polymer, which promotes nanoconjugate endosomal escape, a strong cytotoxic effect mediated by ribosomal functional inactivation can be achieved. Cancer cell death was mediated by apoptosis dependent on nanoparticle concentration but independent of surface ligand density. The cytotoxic activity of Saporin-conjugated colloidal nanoparticles proved to be selective against three different cancer cell lines in comparison with healthy fibroblasts.

2.
ACS Appl Bio Mater ; 4(11): 7800-7810, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34805780

RESUMO

Magnetic resonance imaging (MRI) is one of the most sophisticated diagnostic tools that is routinely used in clinical practice. Contrast agents (CAs) are commonly exploited to afford much clearer images of detectable organs and to reduce the risk of misdiagnosis caused by limited MRI sensitivity. Currently, only a few gadolinium-based CAs are approved for clinical use. Concerns about their toxicity remain, and their administration is approved only under strict controls. Here, we report the synthesis and validation of a manganese-based CA, namely, Mn@HFn-RT. Manganese is an endogenous paramagnetic metal able to produce a positive contrast like gadolinium, but it is thought to result in less toxicity for the human body. Mn ions were efficiently loaded inside the shell of a recombinant H-ferritin (HFn), which is selectively recognized by the majority of human cancer cells through their transferrin receptor 1. Mn@HFn-RT was characterized, showing excellent colloidal stability, superior relaxivity, and a good safety profile. In vitro experiments confirmed the ability of Mn@HFn-RT to efficiently and selectively target breast cancer cells. In vivo, Mn@HFn-RT allowed the direct detection of tumors by positive contrast enhancement in a breast cancer murine model, using very low metal dosages and exhibiting rapid clearance after diagnosis. Hence, Mn@HFn-RT is proposed as a promising CA candidate to be developed for MRI.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Apoferritinas , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Feminino , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Manganês , Camundongos
3.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208275

RESUMO

Assessing the toxic effect in living organisms remains a major issue for the development of safe nanomedicines and exposure of researchers involved in the synthesis, handling and manipulation of nanoparticles. In this study, we demonstrate that Caenorhabditis elegans could represent an in vivo model alternative to superior mammalians for the collection of several physiological functionality parameters associated to both short-term and long-term effects of colloidally stable nanoparticles even in absence of microbial feeding, usually reported to be necessary to ensure appropriate intake. Contextually, we investigated the impact of surface charge on toxicity of superparamagnetic iron oxide coated with a wrapping polymeric envelop that confers them optimal colloidal stability. By finely tuning the functional group composition of this shallow polymer-obtaining totally anionic, partially pegylated, partially anionic and partially cationic, respectively-we showed that the ideal surface charge organization to optimize safety of colloidal nanoparticles is the one containing both cationic and anionic groups. Our results are in accordance with previous evidence that zwitterionic nanoparticles allow long circulation, favorable distribution in the tumor area and optimal tumor penetration and thus support the hypothesis that zwitterionic iron oxide nanoparticles could be an excellent solution for diagnostic imaging and therapeutic applications in nanooncology.

4.
Int J Nanomedicine ; 16: 1943-1960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727808

RESUMO

INTRODUCTION: The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) is usually associated with aggressive and infiltrating breast cancer (BC) phenotype, and metastases. Functionalized silica-based nanocarriers (SiNPs) can be labeled for in vivo imaging applications and loaded with chemotherapy drugs, making possible the simultaneous noninvasive diagnosis and treatment (theranostic) for HER2-positive BC. METHODS: Firstly, FITC-filled SiNPs, were engineered with two different amounts of Hc-TZ (trastuzumab half-chain) per single nanoparticle (1:2 and 1:8, SiNPs to Hc-TZ ratio), which was 99mTc-radiolabeled at histidine residues for ex vivo and in vivo biodistribution evaluations. Secondly, nanoparticles were loaded with DOX and their in vitro and ex vivo/in vivo delivery was assessed, in comparison with liposomal Doxorubicin (Caelyx). Finally, the treatment efficacy of DOX-SiNPs-TZ (1:8 Hc-TZ) was evaluated in vivo by PET and supported by MS-based proteomics profiling of tumors. RESULTS: SiNPs-TZ (1:8 Hc-TZ) tumor uptake was significantly greater than that of SiNPs-TZ (1:2 Hc-TZ) at 6 hours post-injection (p.i.) in ex vivo biodistribution experiment. At 24 h p.i., radioactivity values remained steady. Fluorescence microscopy, confirmed the presence of radiolabeled SiNPs-TZ (1:8 Hc-TZ) within tumor even at later times. SiNPs-TZ (1:8 Hc-TZ) nanoparticles loaded with Doxorubicin (DOX-SiNPs-TZ) showed a similar DOX delivery capability than Caelyx (at 6 h p.i.), in in vitro and ex vivo assays. Nevertheless, at the end of treatment, tumor volume was significantly reduced by DOX-SiNPs-TZ (1:8 Hc-TZ), compared to Caelyx and DOX-SiNPs treatment. Proteomics study identified 88 high stringent differentially expressed proteins comparing the three treatment groups with controls. CONCLUSION: These findings demonstrated a promising detection specificity and treatment efficacy for our system (SiNPs-TZ, 1:8 Hc-TZ), encouraging its potential use as a new theranostic agent for HER2-positive BC lesions. In addition, proteomic profile confirmed that a set of proteins, related to tumor aggressiveness, were positively affected by targeted nanoparticles.


Assuntos
Neoplasias da Mama/diagnóstico , Portadores de Fármacos/química , Nanopartículas/química , Compostos Radiofarmacêuticos/química , Receptor ErbB-2/metabolismo , Dióxido de Silício/química , Tecnécio/química , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Endocitose , Feminino , Fluoresceína-5-Isotiocianato/química , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Proteoma/metabolismo , Proteômica , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento
5.
Biomater Sci ; 9(6): 2032-2042, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33544109

RESUMO

Brain cancers are a group of neoplasms that can be either primary, such as glioblastoma multiforme (GBM), or metastatic, such as the HER2+ breast cancer brain metastasis. The brain represents a sanctuary for cancer cells thanks to the presence of the blood brain barrier (BBB) that controls trafficking of molecules, protecting the brain from toxic substances including drugs. Considering that GBM and HER2+ breast cancer brain metastases are characterized by EGFR and HER2 over-expression respectively, CTX- and TZ-based treatment could be effective. Several studies show that these monoclonal antibodies (mAbs) exert both a cytostatic activity interfering with the transduction pathways of EGFR family and a cytotoxic activity mainly through the immune system activation via the antibody dependent cell-mediated cytotoxicity (ADCC). Since the major limitation to therapeutic mAbs application is the presence of the BBB, here we use a recombinant form of human apoferritin (HFn) as a nanovector to promote the delivery of mAbs to the brain for the activation of the ADCC response. Using a transwell model of the BBB we proved the crossing ability of HFn-mAb. Cellular uptake of HFn-mAb by human cerebral microvascular endothelial cells (hCMEC/D3) was demonstrated by confocal microscopy. Moreover, after crossing the endothelial monolayer, HFn-conjugated mAbs retain their biological activity against targets, as assessed by MTS and ADCC assays. Our data support the use of HFn as efficient carrier to enhance the BBB crossing of mAbs, without affecting their antitumoral activity.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Apoferritinas , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Células Endoteliais , Humanos
6.
Cancers (Basel) ; 13(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572350

RESUMO

The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-"major vault protein" (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault's individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.

7.
Small ; 16(39): e2001450, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856404

RESUMO

The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm. The prolonged imaging of luciferase+ tumor models, demonstrated by an in vitro and an in vivo approach, associated with the prolonged release of luciferin into cancer cells by disulfide bridge reduction, clearly indicates the high efficiency of Luc-linker@HFn for drug delivery to the tumor tissues.


Assuntos
Apoferritinas , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Apoferritinas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico
8.
J Colloid Interface Sci ; 579: 186-194, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32590159

RESUMO

Colloidally stable nanoparticles-based magnetic agents endowed with very high relaxivity and specific absorption rate are extremely desirable for efficient magnetic resonance imaging and magnetic hyperthermia, respectively. Here, we report a water dispersible magnetic agent consisting of zinc-doped superparamagnetic iron oxide nanoparticles (i.e., Zn-SPIONs) of 15 nm size with high saturation magnetization coated with an amphiphilic polymer for effective magnetic resonance imaging and magnetic hyperthermia of glioblastoma cells. These biocompatible polymer-coated Zn-SPIONs had 24 nm hydrodynamic diameter and exhibited high colloidal stability in various aqueous media, very high transverse relaxivity of 471 mM-1 s-1, and specific absorption rate up to 743.8 W g-1, which perform better than most iron oxide nanoparticles reported in the literature, including commercially available agents. Therefore, using these polymer-coated Zn-SPIONs even at low concentrations, T2-weighted magnetic resonance imaging and moderate magnetic hyperthermia of glioblastoma cells under clinically relevant magnetic field were successfully implemented. In addition, the results of this in vitro study suggest the superior potential of Zn-SPIONs as a theranostic nanosystem for brain cancer treatment, simultaneously acting as a contrast agent for magnetic resonance imaging and a heat mediator for localized magnetic hyperthermia.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Meios de Contraste , Humanos , Hipertermia , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Polímeros , Zinco
9.
Pharmaceutics ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817781

RESUMO

One of the goals of the pharmaceutical sciences is the amelioration of targeted drug delivery. In this context, nanocarrier-dependent transportation represents an ideal method for confronting a broad range of human disorders. In this study, we investigated the possibility of improving the selective release of the anti-cancer drug paclitaxel (PTX) in the gastro-intestinal tract by encapsulating it into the biodegradable nanoparticles made by FDA-approved poly(lactic-co-glycolic acid) (PLGA) and coated with polyethylene glycol to improve their stability (PLGA-PEG-NPs). Our study was performed by combining the synthesis and characterization of the nanodrug with in vivo studies of pharmacokinetics after oral administration in mice. Moreover, fluorescent PLGA-nanoparticles (NPs), were tested both in vitro and in vivo to observe their fate and biodistribution. Our study demonstrated that PLGA-NPs: (1) are stable in the gastric tract; (2) can easily penetrate inside carcinoma colon 2 (CaCo2) cells; (3) reduce the PTX absorption from the gastrointestinal tract, further limiting systemic exposure; (4) enable PTX local targeting. At present, the oral administration of biodegradable nanocarriers is limited because of stomach degradation and the sink effect played by the duodenum. Our findings, however, exhibit promising evidence towards our overcoming these limitations for a more specific and safer strategy against gastrointestinal disorders.

10.
Cancers (Basel) ; 11(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31769416

RESUMO

Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA