Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099865

RESUMO

BACKGROUND: Posthepatectomy liver failure (PHLF) represents a life-threatening complication with limited therapeutic options. Neutrophils play a critical and dynamic role during regeneratory processes, but their role in human liver regeneration is incompletely understood, especially as underlying liver disease, detectable in the majority of patients, critically affects hepatic regeneration. Here we explored intrahepatic neutrophil accumulation and neutrophil extracellular traps (NETs) in patients with PHLF and validated the functional relevance of NETs in a murine partial hepatectomy (PHx) model. METHODS: We investigated the influx of neutrophils, macrophages, eosinophils, and mast cells and the presence of their respective extracellular traps in liver biopsies of 35 patients undergoing hepatectomy (10 patients with PHLF) before and after the initiation of liver regeneration by fluorescence microscopy. In addition, NET formation and neutrophil activation were confirmed by plasma analysis of 99 patients (24 patients with PHLF) before and up to 5 days after surgery. Furthermore, we inhibited NETs via DNase I in a murine PHx model of mice with metabolically induced liver disease. RESULTS: We detected rapid intrahepatic neutrophil accumulation, elevated levels of myeloperoxidase release, and NET formation in regenerating human livers, with a significantly higher increase of infiltrating neutrophils and NETs in patients with PHLF. Circulating markers of neutrophil activation, including elastase, myeloperoxidase, and citrullinated histone H3, correlated with markers of liver injury. In a murine PHx model, we showed that the inhibition of NET accelerated hepatocyte proliferation and liver regeneration. CONCLUSIONS: Patients with PHLF showed accelerated intrahepatic neutrophil infiltration and NET formation, which were associated with liver damage. Further, we identified postsurgical myeloperoxidase levels as predictive markers for adverse outcomes and observed that blocking NETs in a murine PHx model accelerated tissue regeneration.


Assuntos
Armadilhas Extracelulares , Hiperplasia Nodular Focal do Fígado , Falência Hepática , Humanos , Animais , Camundongos , Neutrófilos , Falência Hepática/etiologia , Peroxidase
2.
Cell Rep ; 41(6): 111614, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351402

RESUMO

Phosphatidylinositol 3-kinase catalytic subunit p110ß is involved in tumorigenesis and hemostasis. However, it remains unclear if p110ß also regulates platelet-mediated immune responses, which could have important consequences for immune modulation during anti-cancer treatment with p110ß inhibitors. Thus, we investigate how platelet p110ß affects inflammation and infection. Using a mouse model of Streptococcus pneumoniae-induced pneumonia, we find that both platelet-specific p110ß deficiency and pharmacologic inhibition of p110ß with TGX-221 exacerbate disease pathogenesis by preventing platelet-monocyte and neutrophil interactions, diminishing their infiltration and enhancing bacterial dissemination. Platelet p110ß mediates neutrophil phagocytosis of S. pneumoniae in vitro and curtails bacteremia in vivo. Genetic deficiency or inhibition of platelet p110ß also impairs macrophage recruitment in an independent model of sterile peritonitis. Our results demonstrate that platelet p110ß dysfunction exacerbates pulmonary infection by impeding leukocyte functions. Thereby, our findings provide important insights into the immunomodulatory potential of PI3K inhibitors in bacterial infection.


Assuntos
Pneumonia Pneumocócica , Humanos , Fosfatidilinositol 3-Quinases/genética , Plaquetas , Leucócitos , Inibidores de Fosfoinositídeo-3 Quinase , Streptococcus pneumoniae
3.
FASEB J ; 36(10): e22532, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063138

RESUMO

Interleukin-4 (IL-4) and its receptors (IL-4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL-4R also influences monocyte homeostasis and if steady state IL-4 levels are sufficient to affect monocytes. Employing full IL-4 receptor alpha knockout mice (IL-4Rα-/- ) and mice with a myeloid-specific deletion of IL-4Rα (IL-4Rαf/f LysMcre ), we show that IL-4 acts as a homeostatic factor regulating circulating monocyte numbers. In the absence of IL-4Rα, murine monocytes in blood were reduced by 50% without altering monocytopoiesis in the bone marrow. This reduction was accompanied by a decrease in monocyte-derived inflammatory cytokines in the plasma. RNA sequencing analysis and immunohistochemical staining of splenic monocytes revealed changes in mRNA and protein levels of anti-apoptotic factors including BIRC6 in IL-4Rα-/- knockout animals. Furthermore, assessment of monocyte lifespan in vivo measuring BrdU+ cells revealed that the lifespan of circulating monocytes was reduced by 55% in IL-4Rα-/- mice, whereas subcutaneously applied IL-4 prolonged it by 75%. Treatment of human monocytes with IL-4 reduced the amount of dying monocytes in vitro. Furthermore, IL-4 stimulation reduced the phosphorylation of proteins involved in the apoptosis pathway, including the phosphorylation of the NFκBp65 protein. In a cohort of human patients, serum IL-4 levels were significantly associated with monocyte counts. In a sterile peritonitis model, reduced monocyte counts resulted in an attenuated recruitment of monocytes upon inflammatory stimulation in IL-4Rαf/f LysMcre mice without changes in overall migratory function. Thus, we identified a homeostatic role of IL-4Rα in regulating the lifespan of monocytes in vivo.


Assuntos
Interleucina-4/metabolismo , Monócitos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Homeostase , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/metabolismo
4.
Front Immunol ; 13: 695576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514976

RESUMO

Aberrant innate immune responses to the gut microbiota are causally involved in the pathogenesis of inflammatory bowel diseases (IBD). The exact triggers and main signaling pathways activating innate immune cells and how they modulate adaptive immunity in IBD is still not completely understood. Here, we report that the PI3K/PTEN signaling pathway in dendritic cells enhances IL-6 production in a model of DSS-induced colitis. This results in exacerbated Th1 cell responses and increased mortality in DC-specific PTEN knockout (PTENΔDC) animals. Depletion of the gut microbiota using antibiotics as well as blocking IL-6R signaling rescued mortality in PTENΔDC mice, whereas adoptive transfer of Flt3L-derived PTEN-/- DCs into WT recipients exacerbated DSS-induced colitis and increased mortality. Taken together, we show that the PI3K signaling pathway in dendritic cells contributes to disease pathology by promoting IL-6 mediated Th1 responses.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Células Dendríticas , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
5.
J Innate Immun ; 14(4): 293-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34775384

RESUMO

Training of the innate immune system with orally ingested bacterial extracts was demonstrated to have beneficial effects on infection clearance and disease outcome. The aim of our study was to identify cellular and molecular processes responsible for these immunological benefits. We used a murine coronavirus (MCoV) A59 mouse model treated with the immune activating bacterial extract Broncho-Vaxom (BV) OM-85. Tissue samples were analysed with qPCR, RNA sequencing, histology, and flow cytometry. After BV OM-85 treatment, interstitial macrophages accumulated in lung tissue leading to a faster response of type I interferon (IFN) signalling after MCoV infection resulting in overall lung tissue protection. Moreover, RNA sequencing showed that lung tissue from mice receiving BV OM-85 resembled an intermediate stage between healthy and viral infected lung tissue at day 4, indicating a faster return to normal tissue homoeostasis. The pharmacologic effect was mimicked by adoptively transferring naive lung macrophages into lungs from recipient mice before virus infection. The beneficial effect of BV OM-85 was abolished when inhibiting initial type I IFN signalling. Overall, our data suggest that BV OM-85 enhances lung macrophages allowing for a faster IFN response towards a viral challenge as part of the oral-induced innate immune system training.


Assuntos
Adjuvantes Imunológicos , Betacoronavirus , Animais , Bactérias , Imunidade Inata , Pulmão , Macrófagos , Camundongos
6.
Genes (Basel) ; 12(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440358

RESUMO

BACKGROUND: Fabry disease is a hereditary genetic defect resulting in reduced activity of the enzyme α-galactosidase-A and the accumulation of globotriaosylceramide (Gb3) in body fluids and cells. Gb3 accumulation was especially reported for the vascular endothelium in several organs. METHODS: Three Fabry disease patients were screened using a micro-RNA screen. An in vitro approach in human endothelial cells was used to determine miRNA regulation by Gb3. RESULTS: In a micro-RNA screen of three Fabry patients undergoing enzyme replacement therapy, we found that miRNAs let-7a and let-7d were significantly increased after therapy. We demonstrate in vitro in endothelial cells that Gb3 induced activation of NF-κB and activated downstream targets. In addition, NF-κB activity directly reduced let-7a and let-7d miRNA expression as inhibiting NF-kB nuclear entry abolished the Gb3 effects. CONCLUSION: We suggest that let-7a and let-7d are potential markers for enzyme activity and inflammation in Fabry disease patients.


Assuntos
Doença de Fabry/genética , Doença de Fabry/metabolismo , MicroRNAs/genética , Triexosilceramidas/metabolismo , Adulto , Células Cultivadas , Células Endoteliais/metabolismo , Terapia de Reposição de Enzimas , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo
7.
Biochem Pharmacol ; 190: 114634, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058186

RESUMO

BACKGROUND: Inflammation is a key process during atherosclerotic lesion development and propagation. Recent evidence showed clearly that especially the inhibition of interleukin (IL)-1ß reduced atherosclerotic adverse events in human patients. Fatty acid oxidation (FAO) was previously demonstrated to interact with the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway which is required for mature IL-1ß secretion. To understand possible anti-inflammatory properties of FAO inhibition, we tested the effect of pharmacological FAO inhibition using the inhibitor for long-chain 3-ketoacyl coenzyme A thiolase trimetazidine on atherosclerotic plaque development and inflammation. EXPERIMENTAL APPROACH: The effect of FAO inhibition was determined in LDL-R-/- male mice on a C57/BL6 background. In vitro effects of trimetazidine treatment were analyzed in human umbilical vein endothelial cells and human monocyte derived macrophages. KEY RESULTS: We were able to demonstrate that inhibition of FAO reduced atherosclerotic plaque growth. We did not find direct anti-inflammatory properties of trimetazidine in endothelial cells or macrophages in vitro. However, we found that the activation of the NLRP3 system and the secretion of IL-1ß were significantly reduced in macrophages after FAO inhibition. These results were confirmed in atherosclerotic lesions of mice treated with trimetazidine as they showed a significant reduction of IL-1ß and cleaved caspase-1 in the atherosclerotic lesion as well as of IL-1ß and IL-18 in the circulation. CONCLUSION: Overall, we therefore suggest that the main mechanism of reducing inflammation of trimetazidine and FAO inhibition is the reduction of the NLRP-3 activation leading to reduced levels of the proinflammatory cytokine IL-1ß.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Graxos/metabolismo , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de LDL/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Oxirredução , Receptores de LDL/genética , Trimetazidina/farmacologia , Vasodilatadores/farmacologia
8.
Mol Cancer ; 20(1): 16, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461590

RESUMO

BACKGROUND: The IκB kinase (IKK) complex, comprising the two enzymes IKKα and IKKß, is the main activator of the inflammatory transcription factor NF-κB, which is constitutively active in many cancers. While several connections between NF-κB signaling and the oncogene c-Myc have been shown, functional links between the signaling molecules are still poorly studied. METHODS: Molecular interactions were shown by co-immunoprecipitation and FRET microscopy. Phosphorylation of c-Myc was shown by kinases assays and its activity by improved reporter gene systems. CRISPR/Cas9-mediated gene knockout and chemical inhibition were used to block IKK activity. The turnover of c-Myc variants was determined by degradation in presence of cycloheximide and by optical pulse-chase experiments.. Immunofluorescence of mouse prostate tissue and bioinformatics of human datasets were applied to correlate IKKα- and c-Myc levels. Cell proliferation was assessed by EdU incorporation and apoptosis by flow cytometry. RESULTS: We show that IKKα and IKKß bind to c-Myc and phosphorylate it at serines 67/71 within a sequence that is highly conserved. Knockout of IKKα decreased c-Myc-activity and increased its T58-phosphorylation, the target site for GSK3ß, triggering polyubiquitination and degradation. c-Myc-mutants mimicking IKK-mediated S67/S71-phosphorylation exhibited slower turnover, higher cell proliferation and lower apoptosis, while the opposite was observed for non-phosphorylatable A67/A71-mutants. A significant positive correlation of c-Myc and IKKα levels was noticed in the prostate epithelium of mice and in a variety of human cancers. CONCLUSIONS: Our data imply that IKKα phosphorylates c-Myc on serines-67/71, thereby stabilizing it, leading to increased transcriptional activity, higher proliferation and decreased apoptosis.


Assuntos
Quinase I-kappa B/metabolismo , Inflamação/enzimologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Quinase I-kappa B/química , Inflamação/patologia , Masculino , Camundongos , Modelos Biológicos , Mutação/genética , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Próstata/metabolismo , Ligação Proteica , Estabilidade Proteica , Transcrição Gênica
9.
PLoS One ; 15(5): e0233647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442229

RESUMO

In response to injury, adult Schwann cells (SCs) re-enter the cell cycle, change their expression profile, and exert repair functions important for wound healing and the re-growth of axons. While this phenotypical instability of SCs is essential for nerve regeneration, it has also been implicated in cancer progression and de-myelinating neuropathies. Thus, SCs became an important research tool to study the molecular mechanisms involved in repair and disease and to identify targets for therapeutic intervention. A high purity of isolated SC cultures used for experimentation must be demonstrated to exclude that novel findings are derived from a contaminating fibroblasts population. In addition, information about the SC proliferation status is an important parameter to be determined in response to different treatments. The evaluation of SC purity and proliferation, however, usually depends on the time consuming, manual assessment of immunofluorescence stainings or comes with the sacrifice of a large amount of SCs for flow cytometry analysis. We here show that rat SC culture derived cytospins stained for SC marker SOX10, proliferation marker EdU, intermediate filament vimentin and DAPI allowed the determination of SC identity and proliferation by requiring only a small number of cells. Furthermore, the CellProfiler software was used to develop an automated image analysis pipeline that quantified SCs and proliferating SCs from the obtained immunofluorescence images. By comparing the results of total cell count, SC purity and SC proliferation rate between manual counting and the CellProfiler output, we demonstrated applicability and reliability of the established pipeline. In conclusion, we here combined the cytospin technique, a multi-colour immunofluorescence staining panel, and an automated image analysis pipeline to enable the quantification of SC purity and SC proliferation from small cell aliquots. This procedure represents a solid read-out to simplify and standardize the quantification of primary SC culture purity and proliferation.


Assuntos
Células de Schwann/citologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Ratos , Ratos Sprague-Dawley
10.
Atherosclerosis ; 307: 109-120, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439204

RESUMO

Vascular disease is a progressive inflammatory condition fuelled by an unhealthy lifestyle of physical inactivity, cholesterol-rich diet, and smoking. Together with endogenous factors such as age, gender, and autoimmune status, an unhealthy lifestyle fosters a pro-inflammatory and pro-thrombotic milieu, which can lead to endothelial dysfunction, atherosclerotic plaque formation and vascular obstruction or degradation of the subendothelial matrix. Platelet-leukocyte interplay represents an important feature in this context. Platelets get activated in a pro-inflammatory and pro-thrombotic microenvironment and readily interact with innate and adaptive immune cells alike. Even though platelet affinity for physical cell-cell contact is highest with monocytes/macrophages and neutrophils, platelets also avidly interact with lymphocytes by soluble mediators. Platelet-leukocyte crosstalk regulates essential immune responses, supporting leukocyte recruitment at sites of vascular insult, promoting proliferation and differentiation of leukocytes and enhancing pro-inflammatory effector functions such as cytokine and reactive oxygen production. However, under certain conditions platelet-leukocyte interplay also dampens the inflammatory process. Crosstalk of platelet and leukocytes thus represents a driving force in vascular disease. In this review, we highlight the impact of various risk factors for vascular disease on platelet-leukocyte interactions and discuss the underlying mechanisms of platelet-mediated changes in immune responses and the effect of immune cells on the haemostatic system. As the underlying pathologies differ between vascular diseases, we summarize our current knowledge on platelet-leukocyte interplay in chronic vascular diseases such as abdominal aortic aneurysm, peripheral and coronary artery disease as well as acute vascular diseases such as ischaemic stroke and venous thromboembolism.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Plaquetas , Humanos , Inflamação , Leucócitos , Neutrófilos
11.
Thromb Haemost ; 119(10): 1642-1654, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31370072

RESUMO

INTRODUCTION: Blood platelets are increasingly recognized as modulators of leukocyte effector functions in various pathologies including acute lung injury (ALI). ALI is a life-threatening disease, caused by damage to the alveolar epi- and endothelium. Excessive accumulation of leukocytes leads to severe lung inflammation, resulting in impaired lung function and hypoxemia. OBJECTIVE: Since leukocyte migration is modulated by activated platelets and phosphatidylinositol 3-kinase (PI3K) signaling is involved in platelet function, we aimed to elucidate the effect of PI3K on platelet-mediated immune responses. MATERIALS AND METHODS: We generated a mouse model with a platelet-specific deletion of p85α, the most important regulatory subunit of the class IA PI3K, and evaluated platelet function and platelet-leukocyte interactions. Moreover, we analyzed the impact of platelet-specific p85α gene deficiency during sterile peritonitis and acid-induced ALI. RESULTS: In vitro analyses of platelets revealed that lack of p85α led to decreased downstream signaling and diminished expression of surface activation markers, for example, CD62P and CD63, as well as reduced platelet aggregation. Moreover, platelet PI3K essentially mediated direct interactions of platelets with monocytes and neutrophils. In mice, platelet-specific p85α deficiency prevented leukocyte infiltration into the peritoneum and the bronchoalveolar compartment during sterile peritonitis and ALI, respectively. Additionally, the release of the inflammatory cytokine interleukin-12/23 was diminished in platelet p85α-deficient mice during ALI. In contrast to PI3K, neither overexpression nor depletion of platelet phosphatase and tensin homolog, the endogenous antagonist of PI3K, significantly modulated platelet function. CONCLUSION: Our data indicate a crucial role of platelet PI3K signaling for leukocyte extravasation upon inflammatory stimuli in various diseases models.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Leucócitos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Plaquetas/metabolismo , Feminino , Deleção de Genes , Ácido Clorídrico , Hipóxia , Imunidade Inata , Inflamação/induzido quimicamente , Masculino , Megacariócitos/citologia , Camundongos , Selectina-P/metabolismo , Peritonite/metabolismo , Testes de Função Plaquetária , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo
12.
Front Immunol ; 10: 85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778349

RESUMO

The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a "synthetic" state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span-and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.


Assuntos
Inflamação/fisiopatologia , NF-kappa B/metabolismo , Trombose/fisiopatologia , Plaquetas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Megacariócitos/metabolismo , Monócitos/metabolismo , Músculo Liso Vascular/citologia , Neutrófilos/metabolismo , Comunicação Parácrina , Ativação Plaquetária , Sepse/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
13.
Thromb Haemost ; 118(12): 2074-2085, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30419595

RESUMO

Thrombospondin-1 (TSP-1) is primarily expressed by platelets and endothelial cells (ECs) and rapidly released upon their activation. It functions in haemostasis as a bridging molecule in platelet aggregation, by promoting platelet adhesion to collagen and by protecting von Willebrand factor strings from degradation. In blood of patients undergoing surgery and in co-cultures of neutrophils with platelets or ECs, we observed proteolysis of the 185 kDa full-length TSP-1 to a 160-kDa isoform. We hypothesized that TSP-1 processing may alter its haemostatic properties. Selective enzyme inhibitors in co-cultures revealed that neutrophil proteases elastase and cathepsin G mediate TSP-1 processing. The cut site of cathepsin G was mapped to TSP-1 amino acids R237/T238 by Edman sequencing. Formation of neutrophil extracellular traps protected TSP-1 from complete degradation and promoted controlled processing to the 160-kDa isoform. Haemostatic properties were tested by platelet aggregation, adhesion, coagulation and string formation under flow. Platelets from TSP-1 deficient mice did not differ from wild-type in platelet aggregation but showed severe impairment of platelet adhesion to collagen and string formation under flow. Reconstitution experiments revealed that the 160-kDa TSP-1 isoform was markedly more potent than the 185-kDa full-length molecule in restoring function. Thus, TSP-1 processing by neutrophil proteases yields a 160-kDa isoform which shows enhanced potency to promote platelet adhesion and string formation. This finding reveals a novel mechanism of neutrophil-mediated thrombus formation and provides first evidence for the impact of TSP-1 proteolysis on its haemostatic properties.


Assuntos
Plaquetas/fisiologia , Endotélio Vascular/fisiologia , Neutrófilos/fisiologia , Trombospondina 1/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Hemostasia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Adesividade Plaquetária , Agregação Plaquetária , Multimerização Proteica , Proteólise , Trombospondina 1/genética , Trombospondina 1/imunologia , Fator de von Willebrand/metabolismo
14.
PLoS One ; 12(12): e0188921, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220362

RESUMO

Platelets store a plethora of different molecules within their granules, modulating numerous pathways, not only in coagulation, but also in angiogenesis, wound healing, and inflammatory diseases. These molecules get rapidly released upon activation and therefore represent an easily accessible indirect marker for platelet activation. Accurate analysis of platelet-derived molecules in the plasma requires appropriate anticoagulation to avoid in vitro activation and subsequent degranulation of platelets, potentially causing artificially high levels and masking biologically relevant differences within translational research studies. However, there is still enormous heterogeneity among anticoagulants used to prevent unwanted platelet activation, so that plasma levels reported for platelet granule contents range over several orders of magnitude. To address this problem and to define the most robust method of plasma preparation to avoid in vitro platelet activation during processing, we compared plasma concentrations of the three platelet-stored factors thrombospondin (TSP-1), platelet factor 4 (PF4), and soluble P-selectin (sCD62P) between human blood samples anticoagulated with either citrate-theophylline-adenosine-dipyridamole (CTAD), acid-citrate-dextrose (ACD), citrate, ethylenediaminetetraacetic acid (EDTA) or heparin. Additionally, we assessed the effect of storage temperature and time between blood drawing and sample processing within the differentially anticoagulated samples. Our data strongly support the use of CTAD as anticoagulant for determining plasma concentrations of platelet-stored molecules, as anticoagulation with heparin or EDTA led to a 12.4- or 8.3-fold increase in plasma levels of PF4, respectively. Whereas ACD was similar effective as CTAD, citrate only showed comparable PF4 plasma levels when plasma was kept at 4°C. Moreover, blood sampling with CTAD as anticoagulant resulted in the most reproducible values, even when samples were processed at ambient temperature or after storage over 6 hours. In the latter case, anticoagulation with heparin or EDTA led to artificially high plasma levels indicative of in vitro platelet activation. Therefore, we want to raise scientific awareness for choosing CTAD as optimal anticoagulant for the detection of platelet-stored molecules in plasma.


Assuntos
Plaquetas/metabolismo , Adulto , Anticoagulantes/farmacologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Ativação Plaquetária , Temperatura
15.
Sci Rep ; 6: 23034, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971883

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with limited treatment options. Additionally, the lack of a complete understanding of underlying immunological mechanisms underscores the importance of discovering novel options for therapeutic intervention. Since the PI3K/PTEN pathway in myeloid cells influences their effector functions, we wanted to elucidate how sustained PI3K activity induced by cell-type specific genetic deficiency of its antagonist PTEN modulates IPF, in a murine model of bleomycin-induced pulmonary fibrosis (BIPF). We found that myeloid PTEN deficient mice (PTEN(MyKO)), after induction of BIPF, exhibit increased TGF-ß1 activation, mRNA expression of pro-collagens and lysyl oxidase as well as augmented collagen deposition compared to wild-type littermates, leading to enhanced morbidity and decreased survival. Analysis of alveolar lavage and lung cell composition revealed that PTEN(MyKO) mice exhibit reduced numbers of macrophages and T-cells in response to bleomycin, indicating an impaired recruitment function. Interestingly, we found dysregulated macrophage polarization as well as elevated expression and release of the pro-fibrotic cytokines IL-6 and TNF-α in PTEN(MyKO) mice during BIPF. This might point to an uncontrolled wound healing response in which the inflammatory as well as tissue repair mechanisms proceed in parallel, thereby preventing resolution and at the same time promoting extensive fibrosis.


Assuntos
Citocinas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Mediadores da Inflamação/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Bleomicina , Western Blotting , Colágeno/genética , Colágeno/metabolismo , Ativação Enzimática , Feminino , Expressão Gênica , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/metabolismo
16.
Platelets ; 27(5): 479-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26764560

RESUMO

Infection induces platelet activation and consumption, which leads to thrombocytopenia, enhances microvascular thrombosis, impairs microcirculation and eventually triggers disseminated intravascular coagulation (DIC). It is well characterized that endotoxemia results in a pro-inflammatory and pro-coagulatory state, which favors platelet activation. However the early, direct effects of endotoxemia on platelets have not been investigated so far. Therefore we aimed to determine the early effects of the endotoxin lipopolysaccharide (LPS) on platelet function in vivo. In a human endotoxemia model, 15 healthy volunteers were stimulated with LPS (2 ng/kg). Blood was drawn before, 10, 30 and 60 min after LPS challenge and platelet activation analyzed by flow cytometry (GPIIb/IIIa activation, surface CD62P and CD40L, intraplatelet reactive oxygen formation and platelet-leukocyte aggregates) and ELISA (sCD40L, sCD62P and CXCL4). In parallel, blood samples and platelets were spiked with LPS (50 pg/ml) in vitro and monitored over 60 min for the same platelet activation markers. In vitro platelet stimulation with LPS activated platelets independent of the presence of leukocytes and enhanced their adhesion to endothelial cells. In contrast, in vivo no increase in GPIIb/IIIa activation or surface expression of CD62P was observed. However, endotoxemia resulted in a significant drop in platelet count and elevated the plasma CXCL4 levels already 10 min after the LPS challenge. These data indicate that LPS rapidly activates platelets, leading to α-granule release and endothelial adhesion. This might explain the drop in platelet count observed at the onset of endotoxemia.


Assuntos
Plaquetas/metabolismo , Endotoxemia/sangue , Endotoxemia/diagnóstico , Ativação Plaquetária , Biomarcadores , Ligante de CD40/sangue , Células Endoteliais/metabolismo , Endotoxemia/etiologia , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/efeitos adversos , Masculino , Selectina-P/sangue , Adesividade Plaquetária , Contagem de Plaquetas , Fator Plaquetário 4/sangue , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA