Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
RSC Adv ; 13(49): 34587-34597, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024994

RESUMO

The anticancer properties of curcumin have been broadly examined in several shapes, such as nanoparticles and nanocomposite structures. Despite its benefits, curcumin also has some disadvantages, including rapid metabolism, poor absorption, and rapid systemic excretion. Therefore, numerous strategies have been used to increase curcumin's bioavailability. One of these approaches is the use of porous particles like aerogels as drug carriers. Aerogels are special due to their peculiar physical structure. They have a high specific surface area, a significant amount of porosity, and a solid composition, which make them a good choice for drug delivery systems. In the present study, a pH-sensitive aerogel was constructed and evaluated for targeted drug delivery of curcumin to colon cancer. To control the release of curcumin, trehalose was used as a coating agent, and PLP (poly(l-lysine isophthalamide)) was used as a targeted drug delivery agent. PLP is a pseudo-peptidic polymer that increases the cell permeability. In order to investigate and compare the synthesized aerogel before and after loading curcumin and coating with trehalose, physicochemical characterization analyses were performed. Finally, the efficacy of the final formulation was evaluated on HT29 colon cells using the cell bioavailability test. The results indicated the successful synthesis of the aerogel with porous structure with solitary cavities. The trehalose coating performed well, preventing drug release at lower pH but allowing the drug to be released at its intended site. The designed curcumin-loaded porous particles functionalized with PLP showed significant efficacy due to increasing penetration of curcumin into cells, and has potential for use as a new drug carrier with dual effectivity in cancer therapy.

2.
Eur J Med Chem ; 260: 115765, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659194

RESUMO

Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.


Assuntos
Descoberta de Drogas , Processamento de Proteína Pós-Traducional , Proteólise , Fosforilação , Ubiquitinação , Quimera de Direcionamento de Proteólise
3.
Mater Today Bio ; 20: 100672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273793

RESUMO

Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36987630

RESUMO

Radiotherapy is an inevitable choice for cancer treatment that is applied as combinatorial therapy along with surgery and chemotherapy. Nevertheless, radiotherapy at high doses kills normal and tumor cells at the same time. In addition, some tumor cells are resistant to radiotherapy. Recently, many researchers have focused on high-Z nanomaterials as radiosensitizers for radiotherapy. Among them, gold nanoparticles (GNPs) have shown remarkable potential due to their promising physical, chemical, and biological properties. Although few clinical trial studies have been performed on drug delivery and photosensitization with lasers, GNPs have not yet received Food and Drug Administration approval for use in radiotherapy. The sensitization effects of GNPs are dependent on their concentration in cells and x-ray energy deposition during radiotherapy. Notably, some limitations related to the properties of the GNPs, including their size, shape, surface charge, and ligands, and the radiation source energy should be resolved. At the first, this review focuses on some of the challenges of using GNPs as radiosensitizers and some biases among in vitro/in vivo, Monte Carlo, and clinical studies. Then, we discuss the challenges in the clinical translation of GNPs as radiosensitizers for radiotherapy and proposes feasible solutions. And finally, we suggest that certain areas be considered in future research. This article is categorized under: Therapeutic Approaches and Drug Discovery > NA.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Radiossensibilizantes , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/química , Ouro/uso terapêutico , Ouro/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Sistemas de Liberação de Medicamentos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36450366

RESUMO

Cancer therapy requires sophisticated treatment strategies to obtain the highest success. Nanotechnology is enabling, revolutionizing, and multidisciplinary concepts to improve conventional cancer treatment modalities. Nanomaterials have a central role in this scenario, explaining why various nanomaterials are currently being developed for cancer therapy. Viral nanoparticles (VNPs) have shown promising performance in cancer therapy due to their unique features. VNPs possess morphological homogeneity, ease of functionalization, biocompatibility, biodegradability, water solubility, and high absorption efficiency that are beneficial for cancer therapy applications. In the current review paper, we highlight state-of-the-art properties and potentials of plant viruses, strategies for multifunctional plant VNPs formulations, potential applications and challenges in VNPs-based cancer therapy, and finally practical solutions to bring potential cancer therapy one step closer to real applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Vírus de Plantas , Humanos , Nanotecnologia , Nanomedicina , Nanopartículas/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico
6.
Sci Rep ; 12(1): 18407, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319793

RESUMO

The present study aimed to synthesis a proper scaffold consisting of hydroxylated polyphosphazene and polycaprolactone (PCL), focusing on its potential use in tissue engineering applications. The first grafting of PCL to poly(propylene glycol)phosphazene (PPGP) was performed via ROP of ε-caprolactone, whereas PPGP act as a multisite macroinitiator. The prepared poly(propylene glycol phosphazene)-graft-polycaprolactone (PPGP-g-PCL) were evaluated by essential tests, including NMR, FTIR, FESEM-EDS, TGA, DSC and contact angle measurement. The quantum calculations were performed to investigate molecular geometry and its energy, and HOMO and LUMO of PPGP-g-PCL in Materials Studio2017. MD simulations were applied to describe the interaction of the polymer on phospholipid membrane (POPC128b) in Material Studio2017. The C2C12 and L929 cells were used to probe the cell-surface interactions on synthetic polymers surfaces. Cells adhesion and proliferation onto scaffolds were evaluated using FESEM and MTT assay. In vitro analysis indicated enhanced cell adhesion, high proliferation rate, and excellent viability on scaffolds for both cell types. The polymer was further tested via intraperitoneal implantation in mice that showed no evidence of adverse inflammation and necrosis at the site of the scaffold implantation; in return, osteogenesis, new-formed bone and in vivo degradation of the scaffold were observed. Herein, in vitro and in vivo assessments confirm PPGP-g-PCL, as an appropriate scaffold for tissue engineering applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Camundongos , Animais , Alicerces Teciduais/química , Proliferação de Células , Poliésteres/química , Polímeros , Propilenoglicóis
7.
Lasers Med Sci ; 37(2): 1333-1341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34406533

RESUMO

Nanoparticle-mediated hyperthermia is one of the prominent adjuvant therapies which has been faced by many problematic challenges such as efficiency and safety. To compare the nanoparticle-mediated photothermal therapy and radiofrequency electric field hyperthermia, green-synthesized curcumin-coated gold nanoparticles (Cur@AuNPs) were applied in an in vitro study. Using recently published methodologies, each step of the study was performed. Through green chemistry, curcumin was applied as both a reducing and a capping agent in the gold nanoparticle synthesis process. Various techniques were applied for the characterization of the synthesized nanoparticles. The heating rate of Cur@AuNPs in the presence of RFEF or laser irradiation was recorded by using a non-contact thermometer. The cellular uptake of the Cur@AuNPs was studied by ICP-AES. The cellular viability and apoptosis rate of different treatment were measured to investigate the effect of two different nano-hyperthermia techniques on the murine colorectal cancer cell line. The average size of Cur@AuNPs was 7.2 ± 3.3 nm. The stability of the gold nanoparticles in the phosphate buffer saline with and without fetal bovine serum was verified by UV-Vis spectroscopy. FTIR, UV-Vis spectroscopy, and TEM indicate that the stability is a result of phenolic coating on the surface of nanoparticles. Cur@AuNPs can absorb both light and radiofrequency electric field exposure in a way that could kill cancerous cells in a significant number (30% in 64 µg/ml concentration). Green-synthesized Cur@AuNPs could induce apoptosis cell death in photothermal therapy and radiofrequency electric field hyperthermia.


Assuntos
Curcumina , Hipertermia Induzida , Nanopartículas Metálicas , Animais , Sobrevivência Celular , Curcumina/farmacologia , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Camundongos
8.
Sci Rep ; 11(1): 13877, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230542

RESUMO

The main aim of the present study was to fabricate 3D scaffold based on poly (L-lactic acid) (PLLA)/Polycaprolactone (PCL) matrix polymer containing gelatin nanofibers (GNFs) and gold nanoparticles (AuNPs) as the scaffold for bone tissue engineering application. AuNPs were synthesized via the Turkevich method as the osteogenic factor. GNFs were fabricated by the electrospinning methods and implemented into the scaffold as the extracellular matrix mimicry structure. The prepared AuNPs and Gel nanofibers were composited by PLLA/PCL matrix polymer and converted to a 3D scaffold using thermal-induced phase separation. SEM imaging illustrated the scaffold's porous structure with a porosity range of 80-90% and a pore size range of 80 to 130 µm. The in vitro studies showed that the highest concentration of AuNPs (160 ppm) induced toxicity and 80 ppm AuNPs exhibited the highest cell proliferation. The in vivo studies showed that PCL/PLLA/Gel/80ppmAuNPs induced the highest neo-bone formation, osteocyte in lacuna woven bone formation, and angiogenesis in the defect site. In conclusion, this study showed that the prepared scaffold exhibited suitable properties for bone tissue engineering in terms of porosity, pore size, mechanical properties, biocompatibility, and osteoconduction activities.


Assuntos
Bioengenharia , Regeneração Óssea/fisiologia , Gelatina/química , Ouro/química , Nanopartículas Metálicas/química , Nanocompostos/química , Nanofibras/química , Animais , Bovinos , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Nanocompostos/ultraestrutura , Ratos Wistar , Crânio/patologia , Alicerces Teciduais/química
9.
J Control Release ; 330: 49-60, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33340564

RESUMO

Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action. A high energy level is required to generate MBs through the focused continuous laser, which can be harmful to healthy tissues. As an alternative, plasmonic light-responsive nanoparticles, such as gold nanoparticles (AuNPs), are preferably used with continuous laser to decrease the energy threshold and reduce the bubbles area of action. It is also well-known that the utilization of the pulsed lasers instead of the continuous lasers decreases the needed AuNPs doses as well as laser power threshold. When well-confined bubbles are generated in biological environments, they play their own unique mechanical and optical roles. The collapse of a bubble can mechanically affect its surrounding area. Such a capability can be used for cargo delivery to cancer cells and cell surgery, destruction, and transfection. Moreover, the excellent ability of light scattering makes the bubbles suitable for cancer imaging. This review firstly provides an overview of the fundamental aspects of AuNPs-mediated bubbles and then their emerging applications in the field of cancer nanotechnology will be reviewed. Although the pre-clinical studies on the AuNP-mediated bubbles have shown promising data, it seems that this technique would not be applicable to every kind of cancer. The clinical application of this technique may basically be limited to the good accessible lesions like the superficial, intracavity and intraluminal tumors. The other essential challenges against the clinical translation of AuNP-mediated bubbles are also discussed.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Humanos , Lasers , Nanotecnologia , Neoplasias/diagnóstico por imagem
10.
Carbohydr Polym ; 254: 117422, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357903

RESUMO

Chemotherapy as the main cancer treatment method has non-specific effects and various side-effects. Accordingly, significant attempts have been conducted to enhance its efficacy through design and development of "smart" drug delivery systems (DDSs). In this context, natural gums, as a nice gift by the nature, can be exploited as stimuli-responsive DDSs for cancer treatment in part due to their renewability, availability, low cost, bioactivity, biocompatibility, low immunogenicity, biodegradability, and acceptable stability in both in vitro and in vivo conditions. However, some shortcomings (e.g., poor mechanical properties and high hydration rate) restrict their biomedical application ranges that can be circumvented through modification process (e.g., grafting of stimuli-responsive polymers or small molecules) to obtain tailored biomaterials. This review article aimed to compile the stimuli-responsive DDSs based on natural gums. In addition, different types of stimuli, the fundamental features of natural gums, as well as their chemical modification approaches are also shortly highlighted.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Polissacarídeos/química , Polímeros Responsivos a Estímulos/química , Plásticos Biodegradáveis/química , Humanos , Nanogéis/química
11.
Drug Discov Today ; 25(12): 2182-2200, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010479

RESUMO

The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site. One practical and feasible solution to promote the efficiency of conventional CTP is the use of ultrasound (US). In this review, we highlight the potential role of US in combination with lipid-based carriers to achieve a targeted CTP strategy in engineered smart drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/administração & dosagem , Nanoestruturas/administração & dosagem , Ondas Ultrassônicas , Animais , Humanos , Hipertermia Induzida , Neoplasias/terapia
12.
Sci Rep ; 10(1): 14569, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884004

RESUMO

This scenario was designed to investigate the protein corona pattern on the pillar-layer surface of a Cu-based metal-organic framework (MOF) in human plasma. The [Cu(L)(L/)].1.3DMA (MOF-1) {L = 4, 4/-bipyridine and L/ = 5-aminoisophthalic acid}, was synthesized through the sonochemical irradiation approach as well as characterized by various techniques like scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction and single-crystal X-ray diffraction. The space group was determined to be an orthorhombic space group (Pbam) by single-crystal X-ray diffraction. Single-crystal X-ray analyses on MOF-1 showed that Cu+2 ion was 6-coordinated. Besides, to study and clarify interactions between MOFs and biological milieu, human whole blood plasma was selected as a model. Fluorescence spectroscopy and SDS-PAGE techniques were employed to explore quantitative and qualitative in situ characterization of protein corona as well. Furthermore, cell viability in a cancerous cell lines was evaluated by MTT assay in the presence and absence of the corona. The results from SDS-PAGE illustrated that the most adsorbed quantity among plasma proteins belongs to fibrinogen (α, ß and γ chains), and this protein showed the maximum frequency on the MOF-1s surface, so the possible interactions of MOF-1s with fibrinogen also studied using fluorescence spectroscopy and corresponding data were plotted. According to the obtained data from MTT assay, these structures have concentration-dependent toxicity. In brief, based on the obtained data in the current study, the designed MOF can be introduced as a new desirable carrier for drug/gen delivery after further prerequisite assessments.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Estruturas Metalorgânicas/farmacologia , Coroa de Proteína/química , Albumina Sérica Humana/farmacologia , Soroglobulinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Células MCF-7 , Estruturas Metalorgânicas/química
13.
Drug Dev Ind Pharm ; 46(11): 1832-1843, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32897756

RESUMO

A novel multi-stimuli-responsive theranostic nanomedicine was designed and fabricated by the conjugation of a thiol end-capped poly(N-isopropylacrylamide-block-acrylic acid) (HS-PNIPAAm-b-PAA) onto Fe3O4@Au nanoparticles (NPs) followed by physical loading of doxorubicin hydrochloride (Dox) as a general anticancer drug. For this purpose, Fe3O4@Au NPs were fabricated through small Au nanolayer grown on larger magnetic NPs. A HS-PNIPAAm-b-PAA was synthesized through an atom transfer radical polymerization (ATRP) approach, and then conjugated with as-synthesized Fe3O4@Au NPs by Au-S bonding. The Dox loading capacity of the synthesized Fe3O4@Au/Polymer theranostic NPs was calculated to be 81%. The theranostic nanomedicine exhibited excellent in vitro drug release behavior under pH and thermal stimuli. The anticancer activity evaluation using MTT assay (against MCF7 cells) revealed that the fabricated Fe3O4@Au/Polymer has high potential as theranostic nanomedicine for cancer therapy of solid tumors. This nanosystem can also applied in photothermal therapy, hyperthermia therapy, and their combination with chemotherapy due to presence of gold and Fe3O4 nanomaterials in its structure.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Doxorrubicina/química , Doxorrubicina/farmacologia , Ouro , Humanos , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
14.
IET Nanobiotechnol ; 14(5): 428-432, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32691747

RESUMO

The main focus of the current study is the fabrication of a multifunctional nanohybrid based on graphene oxide (GO)/iron oxide/gold nanoparticles (NPs) as the combinatorial cancer treatment agent. Gold and iron oxide NPs formed on the GONPs via the in situ synthesis approach. The characterisations showed that gold and iron oxide NPs formed onto the GO. Cell toxicity assessment revealed that the fabricated nanohybrid exhibited negligible toxicity against MCF-7 cells in low doses (<50 ppm). Temperature measurement showed a time and dose-dependent heat elevation under the interaction of the nanohybrid with the radio frequency (RF) wave. The highest temperature was recorded using 200 ppm concentration nanohybrid during 40 min exposure. The combinatorial treatments demonstrated that the maximum cell death (average of 53%) was induced with the combination of the nanohybrid with RF waves and radiotherapy (RT). The mechanistic study using the flow cytometry technique illustrated that early apoptosis was the main underlying cell death. Moreover, the dose enhancement factor of 1.63 and 2.63 were obtained from RT and RF, respectively. To sum up, the authors' findings indicated that the prepared nanohybrid could be considered as multifunctional and combinatorial cancer therapy agents.


Assuntos
Antineoplásicos/química , Ouro/química , Grafite/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanoestruturas/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ouro/farmacologia , Ouro/toxicidade , Grafite/farmacologia , Grafite/toxicidade , Humanos , Hipertermia Induzida , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanoestruturas/toxicidade , Radioterapia
15.
Int J Biol Macromol ; 154: 795-817, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198035

RESUMO

Despite the recent advances in the treatment strategies of peripheral nerve system defects, peripheral nerve injury (PNI) is still one of the most important health issues with increasing incidence worldwide. The most commonly used treatment approaches are allografts, xenografts, and autologous, which have some drawbacks, including complications, limited source of the donor tissue, tubular collapse, and scar tissue formation. In this context, regenerative medicine has been introduced as a powerful approach to improve the healing process and obtain acceptable functional recovery in the injury site using living cells, scaffold, and bioactive (macro-) molecules. Amongst them, scaffold as a three-dimensional (3D) support biomaterial, structurally bridged the gap or site of injury in order to provide physical and chemical cues to promote correct reinnervation and functional regeneration. Amongst different scaffolding biomaterials, naturally occurring biological macromolecules (more especially proteins and polysaccharides)-based hydrogels exhibited promising results due to their fascinating physicochemical, as well as physiologically relevant properties. This review highlights the recent progress in the development of natural hydrogels-based neural scaffolds. Furthermore, PNI healing process, current status, and challenges are also shortly discussed.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Hidrogéis/uso terapêutico , Peptídeos/uso terapêutico , Traumatismos dos Nervos Periféricos/terapia , Polissacarídeos/uso terapêutico , Engenharia Tecidual , Animais , Humanos , Regeneração Nervosa , Alicerces Teciduais
16.
Mutat Res Rev Mutat Res ; 783: 108296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32192648

RESUMO

Carbon-based nanomaterials (CNMs) have attracted a great deal of attention because of their outstanding combinations of physicochemical properties. The unique physicochemical properties of CNMs have made them promising nanomaterials (NMs) for a large number of applications. However, these size-dependent properties serve as a double-edged sword, which makes them fascinating materials with specific features. In particular, some health hazards have been associated with exposure to NMs. Among these hazards, genotoxicity has been the subject of intense research due to its role in inducing cancer-causing inheritable mutations. High reactivity, agglomeration tendency, and a high surface-to-volume ratio of CNMs make their interactions with biological moieties unknown, complicated, and multifactorial-dependent. In this regard, the genotoxicity of each part of the CNMs family must be evaluated and considered together with other parameters. Because of the increasing application of CNMs in everyday goods and products, as well as the growth in the potential exposure of humans to CNMs, there is a critical need to assess the genotoxic potential of each part of the CNMs family. Therefore, the main objective of this review is to provide an overview of the potential genotoxicity of CNMs and explore risk assessment strategies to quickly screen and assess emerging CNMs. It is critical to pay equal attention to both nongenotoxic and genotoxic CNMs, because some CNMs identified as nongenotoxic NMs may promote or aid the progression of the tumors.


Assuntos
Carbono , Dano ao DNA , Nanoestruturas/toxicidade , Estresse Oxidativo , Animais , Humanos , Nanoestruturas/química
17.
Chem Biol Interact ; 312: 108814, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509734

RESUMO

Nanotechnology is a growing science that may provide several new applications for medicine, food preservation, diagnostic technologies, and sanitation. Despite its beneficial applications, there are several questions related to the safety of nanomaterials for human use. The development of nanotechnology is associated with some concerns because of the increased risk of carcinogenesis following exposure to nanomaterials. The increased levels of reactive oxygen species (ROS) that are due to exposure to nanoparticles (NPs) are primarily responsible for the genotoxicity of metal NPs. Not all, but most metal NPs are able to directly produce free radicals through the release of metal ions and through interactions with water molecules. Furthermore, the increased production of free radicals and the cell death caused by metal NPs can stimulate reduction/oxidation (redox) reactions, leading to the continuous endogenous production of ROS in a positive feedback loop. The overexpression of inflammatory mediators, such as NF-kB and STATs, the mitochondrial malfunction and the increased intracellular calcium levels mediate the chronic oxidative stress that occurs after exposure to metal NPs. In this paper, we review the genotoxicity of different types of metal NPs and the redox mechanisms that amplify the toxicity of these NPs.


Assuntos
Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Cálcio/metabolismo , Dano ao DNA/efeitos dos fármacos , Aditivos Alimentares/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
18.
Medicina (Kaunas) ; 55(8)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387257

RESUMO

Background and objectives: Although studies have elucidated the significant biomedical potential of biogenic metallic nanoparticles (MNPs), it is very important to explore the hazards associated with the use of biogenic MNPs. Evidence indicates that genetic toxicity causes mutation, carcinogenesis, and cell death. Materials and Methods: Therefore, we systematically review original studies that investigated the genotoxic effect of biologically synthesized MNPs via in vitro and in vivo models. Articles were systematically collected by screening the literature published online in the following databases; Cochrane, Web of Science, PubMed, Scopus, Science Direct, ProQuest, and EBSCO. Results: Most of the studies were carried out on the MCF-7 cancer cell line and phytosynthesis was the general approach to MNP preparation in all studies. Fungi were the second most predominant resource applied for MNP synthesis. A total of 80.57% of the studies synthesized biogenic MNPs with sizes below 50 nm. The genotoxicity of Ag, Au, ZnO, TiO2, Se, Cu, Pt, Zn, Ag-Au, CdS, Fe3O4, Tb2O3, and Si-Ag NPs was evaluated. AgNPs, prepared in 68.79% of studies, and AuNPs, prepared in 12.76%, were the two most predominant biogenic MNPs synthesized and evaluated in the included articles. Conclusions: Although several studies reported the antigenotoxic influence of biogenic MNPs, most of them reported biogenic MNP genotoxicity at specific concentrations and with a dose or time dependence. To the best of our knowledge, this is the first study to systematically evaluate the genotoxicity of biologically synthesized MNPs and provide a valuable summary of genotoxicity data. In conclusion, our study implied that the genotoxicity of biologically synthesized MNPs varies case-by-case and highly dependent on the synthesis parameters, biological source, applied assay, etc. The gathered data are required for the translation of these nanoproducts from research laboratories to the clinical market.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/uso terapêutico , Testes de Mutagenicidade/métodos , Humanos , Marketing/métodos , Marketing/normas
19.
Rep Pract Oncol Radiother ; 23(5): 462-473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30263016

RESUMO

Neutron capture therapy (NCT) is a targeted radiotherapy for cancer treatment. In this method, neutrons with a spectra/specific energy (depending on the type of agent used for NCT) are captured with an agent that has a high cross-section with these neutrons. There are some agents that have been proposed in NCT including 10B, 157Gd and 33S. Among these agents, only 10B is used in clinical trials. Application of 157Gd is limited to in-vivo and in-vitro research. In addition, 33S has been applied in the field of Monte Carlo simulation. In BNCT, the only two delivery agents which are presently applied in clinical trials are BPA and BSH, but other delivery systems are being developed for more effective treatment in NCT. Neutron sources used in NCT are fission reactors, accelerators, and 252Cf. Among these, fission reactors have the most application in NCT. So far, BNCT has been applied to treat various cancers including glioblastoma multiforme, malignant glioma, malignant meningioma, liver, head and neck, lung, colon, melanoma, thyroid, hepatic, gastrointestinal cancer, and extra-mammary Paget's disease. This paper aims to review physical, dosimetric and clinical aspects as well as delivery systems in NCT for various agents.

20.
J Drug Target ; 26(7): 525-532, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28972797

RESUMO

Fabrication and characterisation of gold nanoparticles (GNPs) through reducing agents and different capped agents are one of their most attractive applications in biomedicine. GNPs are coated using various agents such as carbohydrate, amino acids, peptides and proteins. These capped gold nanoparticles (C-GNPs) are applied for wide different applications including drug delivery in the recent decade and potential treatment and diagnosis in drug delivery systems (DDS). Recent studies have shown that these novel compounds and conjugated-nanoparticles drugs play a key role for the promising cure of high-risk refractory diseases. In addition, it seems that these compounds have a capability for potential treatment of certain cancers. In this review, a well-defined description of C-GNPs and the application of these nanoparticles are discussed. Our study revealed that C-GNPs with anticancer drugs or new compounds could be potentially applied for biomedical usage especially in cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas/química , Sequência de Aminoácidos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Oligonucleotídeos/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA