Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 30(10): 3155-3175, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35711141

RESUMO

Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Sistemas CRISPR-Cas , Doença Enxerto-Hospedeiro/metabolismo , Imunoterapia , Imunoterapia Adotiva , Camundongos , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
2.
Blood ; 137(21): 2902-2906, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33735915

RESUMO

Sustained expression of therapeutic factor IX (FIX) levels has been achieved after adeno-associated viral (AAV) vector-based gene therapy in patients with hemophilia B. Nevertheless, patients are still at risk of vector dose-limiting toxicity, particularly liver inflammation, justifying the need for more efficient vectors and a lower dosing regimen. A novel increased potency FIX (designated as CB 2679d-GT), containing 3 amino acid substitutions (R318Y, R338E, T343R), significantly outperformed the R338L-Padua variant after gene therapy. CB 2679d-GT demonstrated a statistically significant approximately threefold improvement in clotting activity when compared with R338L-Padua after AAV-based gene therapy in hemophilic mice. Moreover, CB 2679d-GT gene therapy showed significantly reduced bleeding time (approximately fivefold to eightfold) and total blood loss volume (approximately fourfold) compared with mice treated with the R338L-Padua, thus achieving more rapid and robust hemostatic correction. FIX expression was sustained for at least 20 weeks with both CB 2679d-GT and R338L-Padua whereas immunogenicity was not significantly increased. This is a novel gene therapy study demonstrating the superiority of CB 2679d-GT, highlighting its potential to obtain higher FIX activity levels and superior hemostatic efficacy following AAV-directed gene therapy in hemophilia B patients than what is currently achievable with the R338L-Padua variant.


Assuntos
Terapia Genética , Hemofilia B/terapia , Substituição de Aminoácidos , Animais , Tempo de Sangramento , Dependovirus/genética , Avaliação Pré-Clínica de Medicamentos , Fator IX/química , Fator IX/genética , Fator IX/uso terapêutico , Mutação com Ganho de Função , Dosagem de Genes , Vetores Genéticos/uso terapêutico , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/uso terapêutico
3.
Mol Ther Nucleic Acids ; 19: 1309-1329, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160703

RESUMO

We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.

4.
Mol Ther ; 26(5): 1241-1254, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29599079

RESUMO

In vivo tissue-specific genome editing at the desired loci is still a challenge. Here, we report that AAV9-delivery of truncated guide RNAs (gRNAs) and Cas9 under the control of a computationally designed hepatocyte-specific promoter lead to liver-specific and sequence-specific targeting in the mouse factor IX (F9) gene. The efficiency of in vivo targeting was assessed by T7E1 assays, site-specific Sanger sequencing, and deep sequencing of on-target and putative off-target sites. Though AAV9 transduction was apparent in multiple tissues and organs, Cas9 expression was restricted mainly to the liver, with only minimal or no expression in other non-hepatic tissues. Consequently, the insertions and deletion (indel) frequency was robust in the liver (up to 50%) in the desired target loci of the F9 gene, with no evidence of targeting in other organs or other putative off-target sites. This resulted in a substantial loss of FIX activity and the emergence of a bleeding phenotype, consistent with hemophilia B. The in vivo efficacy of the truncated gRNA was as high as that of full-length gRNA. Cas9 expression was transient in neonates, representing an attractive "hit-and-run" paradigm. Our findings have potentially broad implications for somatic gene targeting in the liver using the CRISPR/Cas9 platform.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Fígado/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , Dependovirus/genética , Fator IX/genética , Marcação de Genes , Vetores Genéticos/genética , Hemofilia B/diagnóstico , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Camundongos , Especificidade de Órgãos , Fenótipo , Ligação Proteica , RNA Guia de Cinetoplastídeos
5.
Mol Ther ; 23(1): 43-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195597

RESUMO

Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Genoma , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miosinas Ventriculares/genética , Animais , Sítios de Ligação , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Biologia Computacional , Citomegalovirus/química , Citomegalovirus/genética , Expressão Gênica , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miocárdio/patologia , Miócitos Cardíacos/patologia , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Miosinas Ventriculares/metabolismo
6.
Mol Ther ; 22(9): 1605-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24954473

RESUMO

The robustness and safety of liver-directed gene therapy can be substantially improved by enhancing expression of the therapeutic transgene in the liver. To achieve this, we developed a new approach of rational in silico vector design. This approach relies on a genome-wide bio-informatics strategy to identify cis-acting regulatory modules (CRMs) containing evolutionary conserved clusters of transcription factor binding site motifs that determine high tissue-specific gene expression. Incorporation of these CRMs into adeno-associated viral (AAV) and non-viral vectors enhanced gene expression in mice liver 10 to 100-fold, depending on the promoter used. Furthermore, these CRMs resulted in robust and sustained liver-specific expression of coagulation factor IX (FIX), validating their immediate therapeutic and translational relevance. Subsequent translational studies indicated that therapeutic FIX expression levels could be attained reaching 20-35% of normal levels after AAV-based liver-directed gene therapy in cynomolgus macaques. This study underscores the potential of rational vector design using computational approaches to improve their robustness and therefore allows for the use of lower and thus safer vector doses for gene therapy, while maximizing therapeutic efficacy.


Assuntos
Sítios de Ligação , Biologia Computacional/métodos , Dependovirus/genética , Fígado/metabolismo , Macaca/virologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sequência Conservada , Fator IX/genética , Fator IX/metabolismo , Vetores Genéticos/administração & dosagem , Genoma , Humanos , Fígado/virologia , Macaca/genética , Camundongos , Especificidade de Órgãos , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo
7.
Nat Genet ; 41(6): 753-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19412179

RESUMO

The Sleeping Beauty (SB) transposon is a promising technology platform for gene transfer in vertebrates; however, its efficiency of gene insertion can be a bottleneck in primary cell types. A large-scale genetic screen in mammalian cells yielded a hyperactive transposase (SB100X) with approximately 100-fold enhancement in efficiency when compared to the first-generation transposase. SB100X supported 35-50% stable gene transfer in human CD34(+) cells enriched in hematopoietic stem or progenitor cells. Transplantation of gene-marked CD34(+) cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution. In addition, SB100X supported sustained (>1 year) expression of physiological levels of factor IX upon transposition in the mouse liver in vivo. Finally, SB100X reproducibly resulted in 45% stable transgenesis frequencies by pronuclear microinjection into mouse zygotes. The newly developed transposase yields unprecedented stable gene transfer efficiencies following nonviral gene delivery that compare favorably to stable transduction efficiencies with integrating viral vectors and is expected to facilitate widespread applications in functional genomics and gene therapy.


Assuntos
Evolução Molecular , Transposases/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Elementos de DNA Transponíveis/genética , Humanos , Camundongos , Camundongos Transgênicos/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transposases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA