Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(14): 1985-2001, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502201

RESUMO

Thrombin, a proteolytic enzyme, plays an essential role in catalyzing many blood clotting reactions. Thrombin can act as a marker for some blood-related diseases, such as leukemia, thrombosis, Alzheimer's disease and liver disease. Therefore, its diagnosis is of great importance in the fields of biological and medical research. Biosensors containing sandwich-type structures have attracted much consideration owing to their superior features such as reproducible and stable responses with easy improvement in the sensitivity of detection. Sandwich-type platforms can be designed using a pair of receptors that are able to bind to diverse locations of the same target. Herein, we investigate recent advances in the progress and applications of thrombin aptasensors containing a sandwich-type structure, in which two thrombin-binding aptamers (TBAs) identify different parts of the thrombin molecule, leading to the formation of a sandwich structure and ultimately signal detection. We also discuss the pros and cons of these approaches and outline the most logical approach in each section.


Assuntos
Técnicas Biossensoriais , Trombina , Trombina/química , Proteínas
2.
Int J Pharm ; 646: 123448, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37757957

RESUMO

Due to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets. So, incorporating aptamers into DNA nanostructures led to influential vehicles for bioimaging and biosensing as well as targeted cancer therapy. In this review, the recent developments in the application of aptamer-based DNA origami and DNA nanostructures in advanced cancer treatment have been highlighted. Some of the main methods of cancer treatment are classified as chemo-, gene-, photodynamic- and combined therapy. Finally, the opportunities and problems for targeted DNA aptamer-based nanocarriers for medicinal applications have also been discussed.

3.
Anal Chim Acta ; 1270: 341478, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37311610

RESUMO

Here, a simple aptasensing approach is represented to sensitively detect ochratoxin A (OTA) as one of the most perilous mycotoxins with carcinogenic, nephrotoxic, teratogenic, and immunosuppressive sequels on human health. The aptasensor is based on the alteration in the orientational order of liquid crystal (LC) molecules at the surfactant-arranged interface. Homeotropic alignment of LCs is achieved by the interaction of the surfactant tail with LCs. By perturbing the alignment of LCs due to the electrostatic interaction of the aptamer strand with the surfactant head, a colorful polarized view of the aptasensor substrate is induced drastically. While OTA causes the re-orientation of LCs to a vertical state by forming an OTA-aptamer complex that induces darkness of the substrate. This study shows that the length of the aptamer strand impacts the efficiency of the aptasensor; longer strand results in the greater disruption of LCs, and therefore, increases the aptasensor sensitivity. Hence, the aptasensor can determine OTA in the linear concentration range of 0.1 fM-1 pM as low as 0.021 fM. The aptasensor is capable to monitor OTA in grape juice, coffee drink, corn, and human serum real samples. The proposed LC-based aptasensor provides a cost-effective, easy-to-carry, operator-independent, and user-friendly array with great potential to develop portable sensing gadgets for food quality control and health care monitoring.


Assuntos
Cristais Líquidos , Micotoxinas , Humanos , Tensoativos , Lipoproteínas , Carcinógenos
4.
Talanta ; 235: 122779, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517637

RESUMO

To ensure the safety of dairy products, especially milk, and consequently protect human health, accurate and simple analytical techniques are highly necessary to determine the low concentration of aflatoxin M1 (AFM1) as an important carcinogen. Herein, a novel, accurate and simple fluorescent aptasensor was designed for selective detection of AFM1 based on bivalent binding aptamer-cDNA (BBA-cDNA) structure. Moreover, MoS2 nanosheets (MoS2 NSs) were used as the fluorescent quencher and FAM-labeled complementary strand of aptamer (FAM-CS) was applied as a fluorescent probe. In this study, we achieved a new result. Unlike previous studies, in this work, the BBA-cDNA structure was not disassembled in the presence of the target. Therefore, as the AFM1 concentration increased, more targets were attached to the BBA-cDNA structure and as a result, the BBA-cDNA structure/AFM1 could not be placed on the surface of MoS2 NSs, leading to the more fluorescent intensity detection. Under optimized conditions, the developed fluorescent analytical method revealed great selectivity toward AFM1 with a limit of detection (LOD) of 0.5 nM and a linear range from 0.7 to 10 nM. This fabricated aptasensor indicated excellent analytical performance for AFM1 detection in milk samples with LOD of 0.1 nM. Overall, the proposed approach could provide an effective basis for small molecule analysis to guarantee food and human safety using appropriate aptamer sequences.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aflatoxina M1/análise , Animais , DNA Complementar , Humanos , Limite de Detecção , Leite/química , Molibdênio
5.
Acta Biomater ; 123: 110-122, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453405

RESUMO

In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving "on-demand" therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticles, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
6.
Eur J Pharmacol ; 852: 244-253, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30965056

RESUMO

Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumor and cancer recurrence. Autophagy as a primarily process during starvation or stress has a bipolar nature in cancer. It can cause MDR to become more difficult or make resistant cancer cells more susceptible to chemotherapeutic agents. A number of natural products have been introduced to drug discovery for many years. Some of these compounds have been shown to reverse drug resistance by different regulatory mechanisms. In this review, the focus is on the role of medicinal plants in the MDR phenomenon, primarily through the autophagy process.


Assuntos
Autofagia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Plantas Medicinais/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA